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Last Class

The goal of Statistical Learning Theory is to find a “good” estimator
fn : X → Y, approximating the lowest expected risk

inf
f :X→Y

E(f), E(f) =
∫
X×Y

`(f(x), y) dρ(x, y)

given only a finite number of (training) examples (xi, yi)
n
i=1 sampled

independently from the unknown distribution ρ.



Last Class: The SLT Wishlist

What does “good” estimator mean? Low excess risk E(fn)− E(f∗)

I Consistency. Does E(fn)− E(f∗)→ 0 as n→ +∞
– in Expectation?
– in Probability?

with respect to a training set S = (xi, yi)
n
i=1 of points randomly

sampled from ρ.

I Learning Rates. How “fast” is consistency achieved?
Nonasymptotic bounds: finite sample complexity, tail bounds, error
bounds...



Last Class (Expected Vs Empirical Risk)

Approximate the expected risk of f : X → Y via its empirical risk

En(f) =
1

n

n∑
i=1

`(f(xi), yi)

I Expectation: E|En(f)− E(f)| ≤
√

Vf
n

I Probability (e.g. using Chebyshev):

P (|En(f)− E(f)| ≥ ε) ≤
Vf
nε2

∀ε > 0

where Vf = Var(x,y)∼ρ(`(f(x), y)).



Last Class (Empirical Risk Minimization)

Idea: if En is a good approximation to E , then we could use

fn = argmin
f∈F

En(f)

to approximate f∗. This is known as empirical risk minimization (ERM)

Note: If we sample the points in S = (xi, yi)
n
i=1 independently from ρ,

the corresponding fn = fS is a random variable and we have

E E(fn)− E(f∗) ≤ E E(fn)− En(fn)

Question: does E E(fn)− En(fn) go to zero as n increases?



Issues with ERM

Assume X = Y = R, ρ with dense support1 and `(y, y) = 0 ∀y ∈ Y.

For any set (xi, yi)
n
i=1 s.t. xi 6= xj ∀i 6= j let fn : X → Y be such that

fn(x) =

{
yi if x = xi ∃i ∈ {1, . . . n}
0 otherwise

Then, for any number n of training points:

I E En(fn) = 0

I E E(fn) = E(0), which is greater than zero (unless f∗ ≡ 0)

Therefore E E(fn)− En(fn) = E(0) 9 0 as n increases!

1and such that every pair (x, y) has measure zero according to ρ



Overfitting

An estimator fn is said to overfit the training data if for any n ∈ N:

I E E(fn)− E(f∗) > C for a constant C > 0, and

I E En(fn)− En(f∗) ≤ 0

According to this definition ERM overfits...



ERM on Finite Hypotheses Spaces

Is ERM hopeless? Consider the case X and Y finite.

Then, F = YX = {f : X → Y} is finite as well (albeit possibly large),
and therefore:

E|En(fn)− E(fn)| ≤ E sup
f∈F
|En(f)− E(f)|

≤
∑
f∈F

E|En(f)− E(f)| ≤ |F|
√
VF/n

where VF = supf∈F Vf and |F| denotes the cardinality of F .

Then ERM works! Namely: limn→+∞ E|E(fn)− E(f)| = 0



ERM on Finite Hypotheses (Sub) Spaces

The same argument holds in general: let H ⊂ F be a finite space of
hypotheses. Then,

E|En(fn)− E(fn)| ≤ |H|
√
VH/n

In particular, if f∗ ∈ H, then

E|E(fn)− E(f∗)| ≤ |H|
√
VH/n

and ERM is a good estimator for the problem considered.



Example: Threshold functions

Consider a binary classification problem Y = {0, 1}. Someone has told us
that the minimizer of the risk is a “threshold function”
fa∗(x) = 1[a∗,+∞) with a∗ ∈ [−1, 1].
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We can learn on H = {fa|a ∈ R} = [−1, 1]. However on a computer we
can only represent real numbers up to a given precision.



Example: Threshold Functions (with precision p)

Discretization: given a p > 0, we can consider

Hp = {fa | a ∈ [−1, 1], a · 10p = [a · 10p]}

with [a] denoting the integer part (i.e. the closest integer) of a scalar a.
The value p can be interpreted as the “precision” of our space of
functions Hp. Note that |Hp| = 2 · 10p

If f∗ ∈ Hp, then we have automatically that

E|E(fn)− E(f∗)| ≤ |Hp|
√
VH/n ≤ 10p/

√
n

(VH ≤ 1 since ` is the 0-1 loss and therefore |`(f(x), y)| ≤ 1 for any f ∈ H)



Rates in Expectation Vs Probability

In practice, even for small values of p

E|E(fn)− E(f∗)| ≤ 10p/
√
n

will need a very large n in order to have a meaningful bound on the
expected error.

Interestingly, we can get much better constants (not rates though!) by
working in probability...



Hoeffding’s Inequality

Let X1, . . . , Xn independent random variables s.t. Xi ∈ [ai, bi].

Let X = 1
n

∑n
i=1Xi. Then,

P
(∣∣X − E X

∣∣ ≥ ε) ≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)



Applying Hoeffding’s inequality

Assume that ∀f ∈ H, x ∈ X , y ∈ Y the loss is bounded |`(f(x), y)| ≤M
by some constant M > 0. Then, for any f ∈ H we have

P (|En(f)− E(f)| ≥ ε) ≤ exp(− nε2

2M2
)



Controlling the Generalization Error

We would like to control the generalization error En(fn)− E(fn) of our
estimator in probability. One possible way to do that is by controlling the
generalzation error of the whole set H.

P (|En(fn)− E(fn)| ≥ ε) ≤ P

(
sup
f∈H

|En(f)− E(f)| ≥ ε

)

The latter term is the probability that least one of the events
|En(f)− E(f)| ≥ ε occurs for f ∈ H. In other words the probability of
the union of such events. Therefore

P

(
sup
f∈H

|En(f)− E(f)| ≥ ε

)
≤
∑
f∈H

P (|En(f)− E(f)| ≥ ε)

by the so-called union bound.



Hoeffding the Generalization Error

By applying Hoeffding’s inequality,

P (|En(fn)− E(fn)| ≥ ε) ≤ 2|H| exp(− nε2

2M2
)

Or, equivalently, that for any δ ∈ (0, 1],

|En(fn)− E(fn)| ≤
√

2M2 log(2|H|/δ)
n

with probability at least 1− δ.



Example: Threshold Functions (in Probability)

Going back to Hp space of threshold functions...

|En(fn)− E(fn)| ≤
√

4 + 6p− 2 log δ

n

since M = 1 and log 2|H| = log 4 · 10p = log 4 + p log 10 ≤ 2 + 3p.

For example, let δ = 0.001. We can say that

|En(fn)− E(fn)| ≤
√

6p+ 18

n

holds at least 99.9% of the times.



Bounds in Expectation Vs Probability

Comparing the two bounds

E |En(fn)− E(fn)| ≤ 10p/
√
n (Expectation)

While, with probability greater than 99.9%

|En(fn)− E(fn)| ≤
√

6p+ 18

n
(Probability)

Although we cannot be 100% sure of it, we can be quite confident that
the generalization error will be much smaller than what the bound in
expectation tells us...

Rates: note however that the rates of convergence to 0 are the same
(i.e. O(1/

√
n)).



Improving the bound in Expectation

Exploiting the bound in probability and the knowledge that on Hp the
excess risk is bounded by a constant, we can improve the bound in
expectation...

Let X be a random variable s.t. |X| < M for some constant M > 0.
Then, for any ε > 0 we have

E |X| ≤ ε P (|X| ≤ ε) +MP (|X| > ε)

Applying to our problem: for any δ ∈ (0, 1]

E |En(fn)− E(fn)| ≤ (1− δ)
√

2M2 log(2|Hp|/δ)
n

+ δM

Therefore only log |Hp| appears (no |Hp| alone).



Infinite Hypotheses Spaces

What if f∗ ∈ H \ Hp for any p > 0?

ERM on Hp will never minimize the expected risk. There will always be a
gap for E(fn,p)− E(f∗).

For p→ +∞ it is natural to expect such gap to decrease... BUT if p
increases too fast (with respect to the number n of examples) we cannot
control the generalization error anymore!

|En(fn)− E(fn)| ≤
√

6p+ 18

n
→ +∞ for p→ +∞

Therefore we need to increase p gradually as a function p(n) of the
number of training examples. This approach is known as regularization.



Approximation Error for Threshold Functions

Let’s consider fp = 1[ap,+∞) argmin f ∈ Hp E(f) with ap ∈ [−1, 1].
Consider the error decomposition of the excess risk E(fn)− E(f∗):

E(fn)− En(fn) + En(fn)− En(fp)︸ ︷︷ ︸
≤0

+En(fp)− E(fp) + E(fp)− E(f∗)

We already know how to control the generalization of fn (via the
supremum over Hp) and fp (since it is a single function). Moreover, we
have that the approximation error is

E(fp)− E(f∗) ≤ |ap − a∗| ≤ 10−p (why?)

Note that it does not depend on training data!



Approximation Error for Threshold Functions II

Putting everything together we have that, for any δ ∈ [0, 1) and p ≥ 0,

E(fn)− E(f∗) ≤ 2

√
4 + 6p− 2 log δ

n
+ 10−p = φ(n, δ, p)

holds with probability greater or equal to 1− δ.

In particular, for any n and δ, we can choose the best precision as

p(n, δ) = argmin
p≥0

φ(n, δ, p)

which leads to an error bound ε(n, δ) = φ(n, δ, p(n, δ)) holding with
probability larger or equal than 1− δ.



Regularization

Most hypotheses spaces are “too” large and therefore prone to
overfitting. Regularization is the process of controlling the “freedom” of
an estimator as a function on the number of training examples.

Idea. Parametrize H as a union H = ∪γ>0Hγ of hypotheses spaces Hγ
that are not prone to overfitting (e.g. finite spaces). γ is known as the
regularization parameter (e.g. the precision p in our examples). Assume
Hγ ⊂ Hγ′ if γ ≤ γ′.

Regularization Algorithm. Given n training point, find an estimator
fγ,n on Hγ (e.g. ERM on Hγ). Let γ = γ(n) increase as n→ +∞.



Regularization and Decomposition of the Excess Risk

Let γ > 0 and fγ = argmin
f∈Hγ

E(f)

We can decompose the excess risk E(fγ,n)− E(f∗) as

E(fγ,n)− E(fγ)︸ ︷︷ ︸
Sample error

+ E(fγ)− inf
f∈H
E(f)︸ ︷︷ ︸

Approximation error

+ inf
f∈H
E(f)− E(f∗)︸ ︷︷ ︸

Irreducible error



Irreducible Error

inf
f∈H
E(f)− E(f∗)

Recall: H is the “largest” possible Hypotheses space we are considering.

If the irreducible error is zero, H is called universal (e.g. the RKHS
induced by the Gaussian kernel is a universal Hypotheses space).



Approximation Error

E(fγ)− inf
f∈H
E(f)

I Does not depend on the dataset (deterministic).

I Does depend on the distribution ρ.

I Also referred to as bias.



Convergence of the Approximation Error

Under mild assumptions,

lim
γ→+∞

E(fγ)− inf
f∈H
E(f) = 0



Density Results

lim
γ→+∞

E(fγ)− E(f∗) = 0

I Convergence of Approximation error
+

I Universal Hypotheses space

Note: It corresponds to a density property of the space H in
F = {f : X → Y}



Approximation error bounds

E(fγ)− inf
f∈H
E(f) ≤ A(ρ, γ)

I No rates without assumptions – related to the so-called No Free
Lunch Theorem.

I Studied in Approximation Theory using tools such as Kolmogorov
n-width, K-functionals, interpolation spaces. . .

Prototypical result:
If f∗ has “smoothness”2.

A(ρ, γ) = cγ−s.

2Some abstract notion of regularity parametrizing the class of target functions.
Typical example: f∗ in a Sobolev space W s,2.



Sample Error

E(fγ,n)− E(fγ)

Random quantity depending on the data.

Two main ways to study it:

I Capacity/Complexity estimates on Hγ .

I Stability.



Sample Error Decomposition

We have seen how to decompose the sample error E(fγ,n)− E(fγ) in

E(fγ,n)− En(fγ,n)︸ ︷︷ ︸
Generalization error

+ En(fγ,n)− En(fγ)︸ ︷︷ ︸
Excess empirical Risk

+ En(fγ)− E(fγ)︸ ︷︷ ︸
Generalization error



Generalization Error(s)

As we have observed,

E(fγ,n)− En(fγ,n) and En(fγ)− E(fγ)

Can be controlled by studying the empirical process

sup
f∈Hγ

|En(f)− E(f)|

Example: we have already observed that for a finite space Hγ

P

(
sup
f∈Hγ

|En(f)− E(f)| ≥ ε

)
≤ 2|Hγ | exp(−

nε2

2M2
)



ERM on Finite Spaces and Computational Efficiency

The strategy used for threshold functions can be generalized to any H for
which it is possible to find a finite discretization Hp with respect to the
L1(X , ρX ) norm (e.g. H compact with respect to such norm).

However, in general, it could be computationally very expensive to find
the empirical risk minimizer on a discretization Hp, since in principle it
could be necessary to evaluate En(f) for any f ∈ Hp.

As it turns out, ERM on e.g. convex (thus dense) spaces is often much
more amenable to computations, but we have observed that on infinite
hypotheses spaces it is difficult to control the generalization error.

Interestingly, we can leverage the discretization argument to control the
generalization error of ERM also for special dense hypotheses spaces.



Risks for Continuous functions

Let X ⊂ Rd be a compact space and C(X ) be the space of continuous
functions. Let ‖ · ‖∞ be defined for any f ∈ C(X ) as
‖f‖∞ = supx∈X |f(x)|).

If the loss function ` : Y × Y → R is such that `(·, y) is uniformly
Lipschitz with constant C > 0, for any y ∈ Y, we have that

1) |E(f1)− E(f2)| ≤ C‖f1 − f2‖L1(X ,ρX ) ≤ C‖f1 − f2‖∞, and

2) |En(f1)− En(f2)| ≤
1

n

n∑
i=1

|`(f1(xi), yi)− `(f2(xi), yi)| ≤ C‖f1 − f2‖∞

Therefore, “close” functions in ‖ · ‖∞ will have similar expected and
empirical risks!



Compact Spaces in C(X )

Idea. if H ⊂ C(X ) admits a finite discretization Hp = {h1, . . . , hN} of
precision p with respect to the ‖ · ‖∞(e.g. H is compact with respect to
‖ · ‖∞), then we can control the generalization error over it as

sup
f∈H

|En(f)− E(f)|

≤ sup
f∈H
|En(f)− E(hf )|+ |En(hf )− E(hf )|+ |E(hf )− E(f)|

≤ 2L · 10−p + sup
h∈Hp

|En(h)− E(h)|

where we have denoted hf = argminh∈Hp ‖h− f‖∞

Note. we know how to control suph∈Hp |En(h)−E(h)| since Hp is finite!



Covering numbers

We define the covering number of H of radius η > 0 as the cardinality of
a minimal cover of H with balls of radius η.

N (H, η) = inf{m | H ⊆
m⋃
i=1

Bη(hi) hi ∈ H}

Image credits: Lorenzo Rosasco.

Example. If H ∼= BR(0) is a ball of radius R in Rd:

N (BR(0), η) = (4R/η)d



Example: Covering numbers (continued)

Putting the two together we have that for any δ ∈ [0, 1),

sup
f∈H
|E(fn)− E(f)| ≤ 2Lη +

√
2M2 log(2N (H, η)/δ)

n

holds with probability at least 1− δ.

For η → 0 the covering number N (H, η)→ +∞. However for n→ +∞
the bound tends to zero. It is typically possible to show that there exists
an η(n) for which the bound tends to zero as n→ +∞.



Complexity Measures

In general, the error

sup
f∈Hγ

|En(f)− E(f)|

Can be controlled via capacity/complexity measures:

I covering numbers,

I combinatorial dimension, e.g. VC-dimension, fat-hattering dimension

I Rademacher complexities

I Gaussian complexities

I . . .



Prototypical Results

A prototypical result (under suitable assumptions, e.g. regularity of f∗):

E(fγ,n)− E(f∗) ≤ E(fγ,n − E(fγ))︸ ︷︷ ︸
. γβn−α

(Variance)

+ E(fγ)− E(f∗)︸ ︷︷ ︸
. γ−τ

(Bias)

Goal: find the γ(n) achieving the best Bias - Variance trade-off



Choosing γ(n) in practice

The best γ(n) depends on the unknown distribution ρ. So how can we
choose such parameter in practice?

Problem known as model selection. Possible approaches:

I Cross validation,

I complexity regularization/structural risk minimization,

I balancing principles.

I . . .



Abstract Regularization

We just got our first introduction to the concept of regularization:
controlling the expressiveness of the hypotheses space according to the
number of training examples in order to guarantee good prediciton
performance and consistency.

There are many ways to implement this strategy in practice ( we will see
some of them in this course):

I Tikonov (and Ivanov) regularization

I Spectral filtering

I Early stopping

I Random sampling

I ...



Wrapping Up

This class:

I Overfitting

I Controlling the Generalization error

I Abstract Regularization

Next class: Tikhonov Regularization


