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Last Class(es)

We have observed that key to to control the excess risk of an estimator is
to limit the space of functions from which the estimator itself is chosen.
In particular we have studied in detail how to control the generalization
error of ERM on:

I Finite spaces (e.g. discretizations), or

I Compact spaces in C(X ) w.r.t. the ‖ · ‖∞ norm
(under suitable assumptions on X and the loss).



Last Class(es)

We have considered the case where H =
⋃
γ≥0Hγ can be parametrized

as the union of a family of spaces Hγ where the generalization error can
be controlled uniformly (e.g. finite) and have decomposed the excess risk
E(fγ,n)− E(f∗) as

E(fγ,n)− E(fγ)︸ ︷︷ ︸
Sample error

+ E(fγ)− inf
f∈H
E(f)︸ ︷︷ ︸

Approximation error

+ inf
f∈H
E(f)− E(f∗)︸ ︷︷ ︸

Irreducible error

Where for any γ ≥ 0

fγ,n = argmin
f∈Hγ

En(f) and fγ = argmin
f∈Hγ

E(f)



Last Class(es): Regularization

We controlled

I the sample error via bounds on the generalization error, e.g.

E(fn,γ)− E(fγ) ≤ 2 sup
f∈Hγ

|E(f)− En(f)| ≤ ε(n, δ, γ)

with probability 1− δ for any δ ∈ [0, 1).

I the approximation error by making assumption on the “regularity” of
f∗ (which depends on ρ)

E(fγ)− inf
f∈H
E(f) ≤ A(γ, ρ)

We do not control the irreducible error since it depends by our initial
choice of H.



How to Choose H and the Hγ?

We observed that performing ERM on a finite space of functions, albeit
leading to good statistical performance, can become extremely expensive
from the computational viewpoint (i.e. evaluating the empirical risk on
every function in the space).

In the following of we will focus on (regularized) ERM over linear spaces
of hypotheses H. We consider the Hγ to be bounded convex subsets of
H, which are typically more amenable to computations while still allowing
for good statistical performance.



Ivanov Regularization

Let H be a normed vector space of hypotheses (e.g. a reproducing kernel
Hilbert space). For γ ≥ 0 we consider

Hγ = {f ∈ H | ‖f‖H ≤ γ}

namely Hγ = Bγ(0) ⊂ H are balls of radius γ in H.

ERM on Hγ corresponds to

fγ,n = argmin
‖f‖H≤γ

1

n

n∑
i=1

`(f(xi), yi)

In particular, if `(·, y) is convex for any y ∈ Y, ERM induces a convex
program for which it is possible to find a minimizer in polynomial time.



Linear Functions

In this class we will focus on the case where H is a space of linear
functions, namely: let X ⊂ Rd, Y ⊂ R and

H =
{
f : Rd → R | ∃ w ∈ Rd, s.t. f(x) = x>w ∀x ∈ Rd

}

with norm ‖f‖H = ‖w‖2 and w the parameters corresponding to f .



What about Nonlinear Functions?

Studying the linear case is not limiting in that it can be naturally
extended to richer spaces of functions by means of a collection (or
dictionary) of nonlinear functions ϕ1, . . . , ϕk : Rd → R and

H =

{
f : Rd → R | ∃(wi)ki=1 ∈ R, s.t. f(x) =

k∑
i=1

ϕi(x)wi ∀x ∈ Rd
}
.

We can still consider ‖f‖H = ‖w‖2 with w ∈ Rk the vector with entries
the wis corresponding to f .

In this case H is a space of nonlinear functions on X but can also be
interpreted as a space of linear functions on the image φ(X ) ⊂ Rk of X
via the feature map φ : Rd → Rk with φ(x) = (ϕ1(x), . . . , ϕk(x)).



ERM for Linear Functions

In the linear setting, ERM requires solving an optimization problem on Rd

wn,γ = argmin
‖w‖2≤γ

1

n

n∑
i=1

`(x>i w, yi)

where the empirical risk minimizer fγ,n : Rd → R is defined as

fγ,n(x) = x>wγ,n ∀x ∈ Rd



Statistics and Computations...

We are faced with two questions:

I How to control the sample error of Hγ?

I How to find wγ,n in practice?
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Sample Error with Covering Numbers

Last class we observed that, for compact spaces Hγ ⊂ C(X ) we could
control the sample error of ERM on Hγ as

|E(fγ,n)− E(fγ)| ≤ 2Lη + 2

√
2M2 log(2N (Hγ , η)/δ)

n

with probability 1− δ for any δ ∈ [0, 1). Where L > 0 is the Lipschitz
constant of `(·, y) uniformly on Y, and M > 0 is such that ∀f ∈ Hγ ,
|`(f(x), y)| ≤M .

Note. M = M(γ) depends on Hγ and could potentially increase as γ
increases.



Covering Numbers of Balls in Rd

The following provides estimates for the covering numbers of balls in Rd

Theorem. For any γ ≥ 0 and Bγ(0) ⊂ Rd the ball of radius γ centered
in 0. Then

N (Bγ(0), η) ≤
(

4γ

η

)d
∀η > 0

Since H is isometric to Rd, we automatically have that

N (Hγ , η) ≤
(

4γ

η

)d
∀η > 0

as well.



Sample Error on Hγ

Combining the covering number estimates with our previous bound on

the sample error of ERM on Hγ and by choosing η =
√

M(γ) log γdn/δ
n ,

we can conclude that

|E(wγ,n)− E(wγ)| ≤ O

(√
M(γ) log(γdn/δ)

n

)

with probability not less than 1− δ.



Statistics and Computations...

We are faced with two questions:

I How to control the sample error of Hγ?

I How to find wγ,n in practice?



Tikhonov Regularization

Instead of solving

wγ,n = argmin
‖w‖H≤γ

1

n

n∑
i=1

`(x>i w, yi)

we will address the Tikhonov regularization problem

wλ,n = argmin
w∈Rd

1

n

n∑
i=1

`(x>i w, yi) + λ‖w‖2H

Indeed, it can be shown that for convex `, the two problems are
equivalent (for each γ there exists a λ(γ) such that wγ,n = wλ(γ),n)

BUT Tikhonov regularization is an unconstrained optimization problem
and therefore it is “easier” to design an optimization method to solve it.



Convex Optimization

Depending on the loss function ` we will be able to adopt different
strategies to find the minimizer of the empirical risk.

I Closed form (e.g. Least squares loss).

I Iterative descent methods: Gradient Descent, Newton Method
(smooth loss. E.g. logistic).

I Iterative methods: subgradient method
(non-smooth loss. E.g. hinge).



Least Squares (a.k.a. Ridge Regression)

Let `(f(x), y) = (y − f(x))2, then

wλ,n = argmin
w∈Rd

1

n

n∑
i=1

(yi − x>i w)2 + λ‖w‖22

or in vector notation

wλ,n = argmin
w∈Rd

‖y −Xw‖22 + nλ‖w‖22

with

y =

 y1
...
yn

 ∈ Rn and X =

 x>1
...
x>n

 ∈ Rn×d



Ridge Regression

For any differentiable convex function F : Rd → R we know that

w∗ ∈ Rd is a global minimizer for F ⇐⇒ ∇F (w∗) = 0

For ridge regression this characterization allows to recover the empirical
risk estimator in closed form since

∇w‖y −Xw‖22 + nλ‖w‖22 = 2X>Xw − 2X>y + 2nλw = 0

if and only if

w = (X>X + nλI)−1X>y



A Note on Computational Complexity

Note that in general for two matrices A ∈ Rn×m and B ∈ Rm×p, the
product AB ∈ Rn×p requires O(nmp) operations. Also, for a square
invertible matrix A ∈ Rn×n the cost of computing A−1 ∈ Rn×n is O(n3).

Therefore, the cost of solving ridge regression is O(nd2 + d3). In
particular if d > n this cost is O(d3).

Model selection. In practice we need to solve ridge regression for a
number of candidate hyperparameters λ1, . . . , λm. So the total
computational cost becomes O(md3).



Differentiable Loss Functions

In general, if `(·, y) : R→ R is differentiable for any y ∈ Y, with
`′(t, y) = ∂

∂t`(t, y), we have

∇
(
En(w) + λ‖w‖22

)
=

1

n

n∑
i=1

xi`
′(x>i w, yi) + 2λw = 0

for which is not always possible to find a solution in close form.

In these settings we can resort to iterative descent optimization methods,
which provide a sequence (w(k))k∈N that converge to the global
minimizer.



Gradient Descent

Algorithm Let F : Rd → R differentiable and w(0) ∈ Rd. For any k ∈ N
we define w(k+1) ∈ Rd as

w(k+1) = w(k) − σ∇F (w(k))

where σ > 0 represents the step size of the descent.

Assumption: Let F : Rd → R be a differentiable convex function with
Lipschitz gradient

‖∇F (w)−∇F (w′)‖2 ≤ L‖w − w′‖2 ∀w,w′ ∈ Rd

Theorem. Let σ = 1/L, then

F (w(k))− F (w∗) ≤
L

2k
‖w∗‖2



Projected Gradient Descent

Problems such as Ivanov regularization,

minimize
‖w‖2≤γ

F (w)

which are constrained on a convex set can be solved by projected
gradient descent. Namely, let w(0) ∈ Rd,

w(k+1) = ΠHγ (w(k) − σ∇F (w(k)))

where ΠHγ : Rd → Rd denotes the euclidean projection onto Hγ , namely

ΠHγ (w) = argmin
w′∈Hγ

‖w − w′‖22 = γ
w

‖w‖2

Note. Projected gradient descent enjoys the same convergence rates of
standard gradient descent.



Sample Error and Iterative Methods

An iterative optimization method provides vectors w(k) that get closer to
wγ,n but we are not necessarily recovering it exactly.

Thus, if we decompose the sample error for the estimator after k
iterations, we have

E(w(k))− E(wγ) =

= E(w(k))− En(w(k)) + En(w(k))− En(wγ,n)
+ En(wγ,n)− En(wγ)︸ ︷︷ ︸

≤0

+En(wγ)− E(wγ)

≤ E(w(k))− En(w(k))︸ ︷︷ ︸
sample error on Hγ

+ En(w(k))− En(wγ,n)︸ ︷︷ ︸
optimization error

+ En(wγ)− E(wγ)︸ ︷︷ ︸
sample error on Hγ

Differently from ERM, we are left with an optimization error term...



Sample Error and Optimization Error

E(w(k))− En(w(k))︸ ︷︷ ︸
generalization error on Hγ

+ En(w(k))− En(wγ,n)︸ ︷︷ ︸
optimization error

+ En(wγ)− E(wγ)︸ ︷︷ ︸
generalization error on Hγ

I We already know how the generalization error(s) can be controlled
uniformly on Hγ , leading to an error smaller than ε(n, γ, δ) with
probability no less than 1− δ (e.g. via Covering Numbers, next
class: via “stability”).

I We know that the optimization error decreases as O(1/k).

Therefore it is sufficient to perform k = O
(

1
ε(n,γ,δ)

)
iterations to attain

the same accuracy of ERM.



Computational Complexity of Gradient Descent

Consider the computational complexity of gradient descent applied to
ridge regression.

We have that for any k ∈ N a gradient step entails

w(k+1) = w(k) − σ(X>X + λI)w(k) + σX>y

which requires O(nd2) to evaluate X>X and X>y (once) plus O(d2) for
(X>X + λI)w(k) (at each iteration).

This leads to a total of O((k + n)d2) operations for k gradient steps.



Benefits of Iterative Methods

Therefore, if ε(n, γ, δ) ≥ 1/n, it is sufficient to perform k = O(n)
iterations to achieve the same excess risk as ERM leading to a total cost
of O(nd2) operations.

We observed that the closed form solution of ridge regression requires
O(nd2 + d3) operations, which is dominated by O(d3) if n < d.

Therefore stopping the iterative method before convergence to the ERM
solution can be potentially more appealing from the computational
perspective without degrading statistical performances!



Appendix: Convergence Rates for Gradient Descent

We now prove the convergence rate for gradient descent when
F : Rd → R is a differentiable convex function with Lipschitz gradient

‖∇F (w)−∇F (w′)‖2 ≤ L‖w − w′‖2 ∀w,w′ ∈ Rd

Step 1 (Gradient descent... descends!). We begin by showing that
indeed for a suitable choice of step size the iterates w(k) of gradient
descent are such that F (w(k)) > F (w(k+1)) for any k ∈ N.

Step 2 (Rates) By studying the cumulative improvement of each such
descent step, we derive the rate of convergence for the whole algorithm.



Appendix: Gradient Descent... Descends

Consider the function h(t) = F (w + t(w − w′)). We know that h is

differentiable and that
∫ 1

0
h′(t) = h(1)− h(0). In particular, since

h′(t) =
∂

∂t
F (w + t(w − w′)) = (w − w′)>∇F (w + t(w − w′))

we have

F (w′) = F (w) +

∫ 1

0

(w − w′)>∇F (w + t(w − w′)) dt

= F (w) + (w − w′)>∇F (w) +

∫ 1

0

(w − w′)>(F (w + t(w − w′))− F (w))

≤ F (w) + (w − w′)>∇F (w) + L‖w − w′‖2
∫ 1

0

tdt

= F (w) + (w − w′)>∇F (w) +
L

2
‖w − w′‖2



Appendix: Gradient Descent... Descends

In particular F (w′) ≤ F (w) + (w − w′)>∇F (w) + L
2 ‖w − w

′‖2

If we plug the definition of gradient descent w(k+1) = w(k) − σ∇F (w(k))
we have

F (w(k+1)) ≤ F (w(k))− σ(1− L

2
σ)‖∇F (w(k)‖2

which implies that F (w(k+1)) < F (w(k)) whenever 0 < σ < 2
L . In

particular, if σ = 1
L (which guarantees the maximum decrease)

F (w(k+1)) ≤ F (w(k))− 1

2L
‖∇F (w(k))‖2



Appendix: Convergence Rates for Gradient Descent

(Continued)

Leveraging the previous result:

F (w(k+1)) ≤ F (w(k))−
1

2L
‖∇F (w(k))‖2

≤ F (w∗) + (w(k) − w∗)∇F (w(k))−
1

2L
‖∇F (w(k))‖2 (convexity)

= F (w∗) +
L

2

(
2

L
(w(k) − w∗)∇F (w(k))−

1

L2
‖∇F (w(k))‖2 ± ‖w(k) − w∗‖2

)
= F (w∗) +

L

2

(
‖w(k) − w∗‖2 − ‖w(k) −∇F (w(k))− w∗‖2

)
= F (w∗) +

L

2

(
‖w(k) − w∗‖2 − ‖w(k+1) − w∗‖2

)

In particular F (w(k+1))−D(w∗) ≤ L
2

(
‖w(k) − w∗‖2 − ‖w(k+1) − w∗‖2

)



Appendix: Convergence Rates for Gradient Descent

(Continued)

Therefore we have that for any K ∈ N

K∑
k=1

F (wk)− F (w∗) ≤
L

2

K∑
k=1

(
‖wk−1 − w∗‖2 − ‖w(k) − w∗‖2

)
=

L

2

(
‖w0 − w∗‖2 − ‖wK − w∗‖2

)
≤ L

2
‖w0 − w∗‖2

In particular, since F (w(k)) is a decreasing sequence we have

K(F (wK)− F (w∗)) ≤
K∑
k=1

F (wk)− F (w∗) ≤
L

2
‖w0 − w∗‖2

From which we conclude F (wK)− F (w∗) ≤
L

2K
‖w0 − w∗‖2 as desired


