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Uniform Stability - Notation

Let Z be a set. For any set

S = {z1, . . . , zn} ∈ Zn

and for any z ∈ Z and i = 1, . . . , n, we denote

Si,z = {z1, . . . , zi−1, z, zi+1, . . . , zn} ∈ Zn

the set obtained by substituting the i-th element in S with z.



Uniform Stability

We denote input-output pairs as z = (x, y) ∈ Z = X × Y and for any
f : X → Y we denote `(f, z) = `(f(x), y).

For an algorithm A and for any dataset S = (zi)
n
i=1 we write fS = A(S).

Uniform β-Stability. An algorithm A is β(n)-stable with n ∈ N and
β(n) > 0, if for all S ∈ Zn, z ∈ Z and i = 1, . . . , n

sup
z̄∈Z

|`(fS , z̄)− `(fSi,z , z̄)| ≤ β(n)



Stability and Generalization Error

Theorem. Let A be a uniform β(n)-stable algorithm. For any dataset
S ∈ Zn denote fS = A(S). Then

| ES∼ρn [E(fS)− En(fS)] | ≤ β(n)

where S ∼ ρn denotes a random dataset with n points sampled
independently from ρ.

The above result shows that uniform stability of an algorithm allows to
directly control its generalization error.

Note that this result relies only on the properties of the learning
algorithm but does not require any knowledge about the complexity of
the hypotheses space (however it is indirectly related).



Stability and Generalization Error (Continued)

We begin by providing alternative formulation for:

1) The expectation of the empirical risk ES [ ES(fS) ]
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2) The expected risk E(fS)
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Stability and Generalization Error (Continued)

Putting the two together

∣∣∣ ES [E(fS)− En(fS)]
∣∣∣ ≤ ∣∣∣∣∣ ESES′
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Stability of Tikhonov Regularization

In the following we focus on the Tikhonov regularization algorithm
A = Aλ with λ > 0. In particular, for any S ∈ Zn

A(S) = fS = argmin
f∈H

1

n

n∑
i=1

`(f, zi) + λ‖f‖2H

We will show that when H is a reproducing kernel Hilbert space (RKHS),
Tikhonov regularization is β(n)-stable with

β(n) = O

(
1

nλ

)



Error Decomposition for Tikhonov Regularization

Define fλ = argminf∈H E(f) +λ‖f‖2H and decompose the excess risk as

E(fS)− E(f∗) = E(fS)± ES(fS)± ES(fλ)− E(f∗)± λ‖fλ‖2H
Now, since

I E(fS)− E(f∗) ≤ E(fS)− E(f∗) + λ‖fS‖2H,

I fS is the minimizer of the regularized empirical risk
En(fS) + λ‖fS‖2H − En(fλ)− λ‖fλ‖2H ≤ 0,

I ES ES(fλ) = E(fλ)

We can conclude

ES E(fS)− E(f∗) ≤ ES [E(fS)− En(fS)] + E(fλ)− E(f∗) + λ‖fλ‖2H



Error Decomposition for Tikhonov Regularization

ES E(fS)− E(f∗) ≤ ES [E(fS)− En(fS)]︸ ︷︷ ︸
Generalization Error

+ E(fλ)− E(f∗) + λ‖fλ‖2H︸ ︷︷ ︸
(related to) Interpolation Error

and Approximation Error

Stability of Tikhonov regularization O(1/(nλ)) + assuming the
interpolation/approximation error to be bounded by λs with s > 0 lead to

ES E(fS)− E(f∗) ≤ O(1/(nλ)) + λs

We can choose the optimal λ(n) and (expected) error rates ε(n) as

λ(n) = O(n−
1

s+1 ) ES E(fS)− E(f∗) ≤ O(n−
s

s+1 )

Note. If f∗ ∈ H it is easy to show that s = 1 and therefore that the
expected excess risk goes to zero at least as O(n−1/2).



Stability of Tikhonov Regularization

Let H be a RKHS with associated kernel k : X × X → R. We want to
show that for any S ∈ Zn, z′ ∈ Z and i = 1, . . . , n

sup
z∈Z

|`(fS , z)− `(fSi,z′ , z)| ≤
2L2k2

nλ

where L > 0 is the Lipschitz constant of `(·, y) (uniformly w.r.t. y ∈ Y)
and k2 = supx∈X k(x, x).



Reproducing Property

Recall the reproducing property of RKHS H: ∀f ∈ H, ∀x ∈ X

f(x) = 〈f, k(·, x)〉H

In particular, |f(x)| ≤
√
k(x, x)‖f‖H.

Therefore,

sup
z∈Z

|`(fS , z)− `(fSi,z′ , z)| ≤ sup
x∈X ,y∈Y

|`(fS(x), y)− `(fSi,z′ (x), y)|

≤ L sup
x∈X
|fS(x)− fSi,z′ (x)| ≤ Lk‖fS − fSi,z′ ‖H

We need to control ‖fS − fSi,z′‖H. We will exploit the strong convexity
of Tikhonov regularization.



Strong convexity of ‖ · ‖2H

Technical observation. For any f, g ∈ H and θ ∈ [0, 1] we have

‖θf + (1− θ)g‖2H = θ2‖f‖2H = (1− θ)2‖g‖2H + 2θ(1− θ)〈f, g〉H
= θ(1− (1− θ))‖f‖2H + (1− θ)(1− θ)‖g‖2H + 2θ(1− θ)〈f, g〉H
= θ‖f‖2H + (1− θ)‖g‖2H − θ(1− θ)(‖f‖

2
H + ‖g‖2H − 2〈f, g〉H)

= θ‖f‖2H + (1− θ)‖g‖2H − θ(1− θ)‖f − g‖
2
H

In particular, for any F ′ : H → R convex, if we denote
F (·) = F ′(·) + λ‖ · ‖2, we have

F (θf + (1− θ)g) ≤ θF (f) + (1− θ)F (g)− λθ(1− θ)‖f − g‖2H



Strong convexity II

Let θ = 1/2. Then we have

2F

(
f + g

2

)
≤ F (f) + F (g)− λ

2
‖f − g‖2H

By subtracting on both sides 2F (f) and adding λ/2 ‖f − g‖2H we have

λ

2
‖f − g‖2H + 2F

(
f + g

2

)
− 2F (f) ≤ F (g)− F (f)

Finally, note that if f = argminf∈H F (f) we have F
(
f+g

2

)
− F (f) ≥ 0

and therefore

λ

2
‖f − g‖2H ≤ F (g)− F (f)



Strong Convexity of Tikhonov Regularization

Let now define

I F1(·) = ES(·) + λ‖ · ‖2H and

I F2(·) = ESi,z′ (·) + λ‖ · ‖2H

Furthermore, to simplify the notation denote f1 = fS and f2 = fSi,z′ .

Recall that by construction

f1 = argmin
f∈H

F1(f) and f2 = argmin
f∈H

F2(f)



Strong Convexity of Tikhonov Regularization II

By our previous observation on strong convexity

λ

2
‖f1−f2‖2H ≤ F1(f2)−F1(f1) and

λ

2
‖f1−f2‖2H ≤ F2(f1)−F2(f2)

Summing the two inequalities (and rearranging the terms)

λ‖f1 − f2‖2H ≤ F1(f2)− F2(f2) + F2(f1)− F1(f1)

= ES(f2)− ESi,z′ (f2) + ESi,z′ (f1)− ES(f1)

=
1

n
(`(f2, zi)− `(f2, z′) + `(f1, z

′)− `(f1, zi))

=
1

n
(`(f2, zi)− `(f1, zi) + `(f1, z

′)− `(f2, z′))) ≤
2

n
sup
z
|`(f1, z)− `(f2, z)|

where we have used the definitions of F1 and F2 and the fact that the
risks ES and ESi,z′ differ only for one point. Therefore, for any function
f : X → Y, we have ES(f)− ESi,z′ (f) = 1

n (`(f, zi)− `(f, z′)).



Stability of Tikhonov Regularization (Continued)

Since supz |`(f1, z)− `(f2, z)| ≤ Lk‖f1 − f2‖H, we have

λ‖f1 − f2‖2H ≤
2kL

n
‖f1 − f2‖H

which implies

‖f1 − f2‖H ≤
2kL

nλ

and from which we can conclude that

sup
z∈Z

|`(f1, z)− `(f2, z)| ≤
2L2k2

nλ

proving the β(n) = 2L2k2

nλ uniform stability of Tikhonov regularization.



So far...

In previous classes we have studied the excess risk of an estimator (in
particular its sample error) by controlling the complexity of the space of
functions from which the estimator was sampled (e.g. by Covering
numbers).

In this class we have investigated an alternative approach that focuses
exclusively on properties of the learning algorithm (rather than of the
whole space). In particular we have observed how the stability of an
estimator allows to control its generalization error in expectation.

We have shown in particular that Tikhonov regularization is a stable
algorithm. This allowed to immediately derive excess risk bounds.



Stability and Generalization (in Probability)

Ok but... what about controlling the generalization error in probability
rather than in expectation?

We can exploit the following result

McDiarmid’s Inequality. Let F : Zn ×Zn → R such that for any
i = 1, . . . , n there exists a ci > 0 for which
supS∈Zn,z∈Z |F (S)− F (Si,z)| ≤ ci. Then,

PS∼ρn (|F (S)− ES′∼ρnF (S′)| ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)



Stability and Generalization (Continued)

(Slides thanks to Lorenzo Rosasco and Tomaso Poggio)

For a β(n) uniformly stable algorithm A we will apply McDiarmid’s
inequality to the excess risk of the estimator returned by the algorithm,
namely

F (S) = E(fS)− ES(fS).

Where for any S ∈ Zn we have denoted fS = A(S).

Recall that | ES [F (S)] | = | ES E(fS)− ES(fS) | ≤ β(n).



Stability and Generalization (Continued)

By McDiarmid, for any δ ∈ (0, 1] we have

|F (S)− ES′F (S′)| ≤
√∑n

i=1 ci log(2/δ)

2

with probability no less than 1− δ, where

sup
S∈Zn,z∈Z

|F (S)− F (Si,z)| ≤ ci

for i = 1, . . . , n.



Stability and Generalization (Continued)

In particular, since |ES′F (S′)| ≤ β(n), and F (S) = ES(fS)− E(fS), we
have

|ES(fS)− E(fS)| ≤ β(n) +

√∑n
i=1 ci log(2/δ)

2

with probability no less than 1− δ.

We need to bound the ci.



Bounding the Deviation of the Generalization Error

We have

|F (S)− F (Si,z)| = |ES(fS)− E(fS) + ESi,z (fSi,z )− E(fSi,z )|
≤ |ES(fS)− E(fSi,z )|+ |ESi,z (fSi,z )− E(fS)|

≤
1

n
|`(fS , zi)− `(fSi,z , z)|+

1

n

∑
j 6=i

|`(fS , zj)− `(fSi,z , zj)|+ β(n)

≤ 2β(n) +
2

n
sup

S∈Zn,
i=1,...,n

|`(fS , zi)|

Depending on the algorithm A and loss function ` we can control the last
term. Let us assume that there exists M > 0 such that

sup
S∈Zn,
i=1,...,n

|`(fS , zi)| ≤M

We will then provide an estimate of M for Tikhonov regularization.



Stability and Generalization (Continued)

We have shown that

n∑
i=1

c2i ≤ 4
∑
i=1

(β(n) +M/n)2 = 4n(β(n) +M/n)2.

Plugging it into the previous bound, we have

|ES(fS)− E(fS)| ≤ β(n) + (nβ(n) +M)

√
2 log(2/δ)

n

with probability no less than 1− δ.



Stability of Tikhonov Regularization

The last term we need to control is

sup
S∈Zn,
i=1,...,n

|`(fS , zi)|

We will show it for Tikhonov regularization.



Stability of Tikhonov Regularization (Continued)

Assume that for any y ∈ Y, the loss `(0, y) ≤ C0 is uniformly bounded by
a constant C0 ≥ 0. Since fS is the minimizer of the Tikhonov regularized
empirical risk, we have that for any S ∈ Zn

ES(fS) + λ‖fS‖2 ≤ ES(0) ≤ C0

In particular, if the loss ` : Y × Y → R+ is non-negative, this implies

‖fS‖ ≤
√
C0

λ



Stability of Tikhonov Regularization (Continued)

Therefore, for any S ∈ Zn and z ∈ Z,

|`(fS , z)| ≤ |`(fS , z)− `(0, z)|+ |`(0, z)|
≤ |`(fS , z)− `(0, z)|+ C0

≤ kL‖fS‖H + C0

≤ kL
√
C0

λ
+ C0



Stability of Tikhonov Regularization (Continued)

By plugging our estimate of M = kL
√

C0

λn + C0, and the β(n) = 2k2L2

nλ

stability of Tikhonov regularization in the bound on the generalization
error, we have

|ES(fS)− E(fS)| ≤ 2k2L2

nλ
+ (

2k2L2

λ
+ kL

√
C0

λn
+ C0)

√
2 log(2/δ)

n

with probability no less than 1− δ.



Stability of Tikhonov Regularization (Continued)

In particular, the generalization error of Tikhonov regularization will
tighten as

|ES(fS)− E(fS)| ≤ O
(

1

λ
√
n

)
with high probability. As expected, the bound on the generalization error
will decrease as we observe more point but will increase if we regularize
less (e.g. make the algorithm less stable).

As already observed for the convergence in expectation, this can be
combined with assumptions on the interpolation/approximation error in
order to find the most suited estimate for λ



Wrapping up

This class:

I Stability & Generalization error

I Stability of Tikhonov Regularization

Next class: Stability of early stopping.


