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Computational Regularization

So far we have mostly focused on studying and characterizing the
generalization (i.e. statistical) properties of a learning algorithm.

We have observed that good learning rates can be achieved by: 7)
limiting the expressiveness of the hypotheses class from which the
estimator is obtained in order to avoid overfitting and then, i) increasing
such expressiveness only as we see more training points.

Computational regularization is a paradigm that aims to implement
regularization (i.e. control the expressiveness of an hypotheses class) by
limiting the computational resources available to the algorithm. The idea
is that in this way we can obtain an algorithm that is both statistically
efficient *and* much faster to train.



Computational Regularization: Early Stopping

In this class will consider an instance of computational regularization
known as early stopping.

Intuition: Consider an iterative method such as gradient descent applied
to unregularized ERM with n training points. Let f,, be the ERM
solution and ( T(Lt))teN the sequence of iterates obtained by gradient

descent (for instance starting from f,(LO) =0).

Clearly, the first few iterates (i.e. for small values of ¢) will not fit well

the training data, while for ¢ that grows to infinity, the predictors f,(lt) will
get closer to the ERM solution f,, and will start to overfit.

Early stopping aims to find the sweet spot between performing “too
many” and “too few” iterations.



Early Stopping: Further Intuition

Every step of gradient descent allows to move from the previous iterate
only by a certain amount (i.e. ) e H.(+) for some radius r(t)).

fa

Therefore, intuitively, in early stopping the number ¢ of iterations takes
the role of regularization parameter. Indeed, similarly to what we
observed for Ivanov/Tikhonov regularization, t controls the expressiveness

of the class of estimators f,g,t).



Early Stopping: Further Intuition

Let's make the above intuition more rigorous:

Lemma. Let F': H — R be L-Lipschitz, convex and differentiable.
Then,

IVE(HI<L  VfeH.

Therefore, at step ¢ of gradient descent on F, with step-size v > 0

[fellw = [fom1 = AVE(fio) I < [l fe-alln + 7L <ty L

Namely, after ¢ steps, we are at least in a ball H,( of radius r(t) = tyL.



Early Stopping and Generalization Error

Let us assume f, € H. Consider the decomposition of the expected risk
E(f5") —E(f) as

) = €s(fS7) + Es(F7) = Es(f.) +Es(f) — E(f)

Generalization error Optimization error

Note that:
» Optimization error: Sg(féT)) —&s(f+) <O(1/T), and
> Eg Es(fe) —E(fi) =0

We are left with studying the generalization error of the estimator éT).
In this class we will address this question (in expectation only) in terms
of the stability of gradient descent.



Refresher on Stability

Notation. Let S = (z;)]; € 2" with Z = X x Y and consider the
empirical risk Es(f) = 2 Y°,_, U(f, z;) for a function f: X — Y. We

n

denote ((f,z;) = £(f(x:),y:) where 2; = (2,y;) € Z.

Recall that an algorithm A : S +— fg is said uniform 3(n)-stable if, for
any S€ Z" ze€ Zandi=1,...,n

sup [(fs,2) = U(fsi=,2)| < B(n)

zZeZ

where S%7 is the set obtained by substituting z; with z in S.

In last class we observed that stability directly implies bounds on the
generalization error, namely

[Es~pn [E(fs) — Es(fs)]| < B(n)



Stability of Gradient Descent

In this class we will prove the following characterization for the stability
of gradient descent.

Theorem. Let {(-,y) : H — R be convex, L-Lipschitz and M-smooth

uniformly for y € ). For any training set S € Z", let féT) be obtained
by applying gradient descent with steps-size v = 1/M on the empirical
risk associated to S. The corresponding algorighm is 3(n,T')-stable with

2L2k? Z
M n

B(n,T) <



Learning Rates for Early Stopping

We can therefore bound the excess risk as

e - e <o+ 1)

leading to the optimal choice for the number of iterations to be of the

order T'(n) = O(y/n).

Note the similarity with the bound of the excess risk for Tikhonov
regularization

E(fsn) — E(f) <O (n& T A) .

Again, we see how T playes the role of 1/\ and can indeed be interpreted
as a regularization parmeter.



Benefits of Early Stopping

While achieving the same statistical performance as Tikhonov
regularization

E(STMDY —e(f.) < 0(1/v/n).

early stopping can often be advantageous from the computational
perspective.

For instance, in Tikhonov/lvanov regularization, one has to find the
regularization parmeter A\ by cross-validation over a set of candidate
values A1, ..., A,. This requires solving m optimization problems (for
instance by gradient descent).

On the contrary, the hyperparameter of early stopping is the number of
iterations. This means that we need to run only one instance of gradient
descent.



Stability of Gradient Descent (Auxiliary Results)

We now prove the stability of Gradient Descent.

Theorem. Let (-,y) : H — R be convex, L-Lipschitz and M-smooth

uniformly for y € ). For any training set S € Z", let féT) be obtained
by applying gradient descent with steps-size v = 1/M on the empirical
risk associated to S. The corresponding algorighm is 3(n,T')-stable with

2L%k? T

B(n.T) < =

However, before doing that we need some auxiliary results.



Stability of Gradient Descent (Auxiliary Result I)

Lemma. F': H — R convex M-smooth with minimizer w, € H. Then

1
F(w) = F(ws) = WHVF(U))”%{ Vw e H

Proof. From a previous class (Lec 4) we know that for any v, w € H
M
F(v) < F(w) +(VF(w),v —w)p + —lw - vl
By minimizing the left and right sides w.r.t. v € H, we have
F < inf F VF M i =F L vrw)2
(wa) < inf F(w) +(VF(w),v —w)y + —[lw —vll3 = F(w) — 5 IVE(w)l3

Which yields the desired result. (Note that the minimizer of the
quadratic upper bound is indeed given by v = w — ﬁVF(w))



Co-coercivity of the Gradient (Auxiliary Result II)

Proposition. F': H — R convex M-smooth. Then Vv, w € H
1
(VE(w) = VF(v),w —v)n 2 FlIVF(w) ~ VF(v)|3
Proof. Define
Fy(z) = F(z) = (VF(w), 2)xn and F,(z) = F(z)—(VF(v),z)3.
It is trivial to verify that F,, and F,, are M-smooth as well.

Moreover w and v are the minimizers of respectively F,, and F, since
VFE,(2) =VF(z) —VF(w) =0 < z=w.

Therefore we can apply the previous Lemma.



Co-coercivity of the Gradient (Continued)

By applying the Lemma we have

> 537 IVE ()3 < Fu(v)—Fu(w) = F(v)=F(w)—(VF(w), v—w)n

> LIV )3, < Fy(w)— Fu(v) = F(w)—F(v) ~ (VF(v), w—v)

Since ||[VF,(v)||lx = |[VE,(w)||ly = [VF(w) — VF(w)]||3, by summing
the two inequalities we have

SHIVE@) ~ VR, < (VF(@) - VF(@),v - w)

as desired.



Gradient Descent is Non-expansive (Aux. Res. Ill)

Theorem. ¢ : H — R convex, differentiable and M-smooth. Let
0>~ >2/M and G : H — H be the gradient step operator
G(f)=f—~VLf) for f € H. Then

1G(f) = G(lln < If — gln

Proof. By applying the co-coercivity of a convex M-smooth loss, we have

IG(f) = G(@)II3, = IIf —vVES) — g +7VE)II3,
= |If — gll3, — 29(VL(f) — VL), f — ghu +V2IVEUS) — VE(9)II3,

<11 = gllZ — (2 —DIVES) - V)2,

M
<|If - gll%,

since y(7 —7) < 1 for v € [0,2/M]. This implies the desired result.



Stability of Gradient Descent (Proof)

We can now prove the stability of gradient descent.

Proof. Let S € Z", z € Z and i € {1,...,n}. To simplify the notation,

let us denote f; (instead of fT(,,t)) the t-th iterate of gradient descent with
step v on S. Similarly, denote with f/ € H the ¢-th iterate of gradient
descent with step v on S%=.

Given a total number of iterations T', we want to control

sup [€(fr,2) = (fr, )| < Lk| fr — frln



Stability of Gradient Descent (Continued)

For any ¢t € N, by construction fi11 = fi —YVEs(fi) and
fio1 = fr —7VEsi=(f{). Therefore

Il fror — fryallae = [Ve(fe, i) — VU(F,, 2)]

Fo= £ = 237 [V 25) = VU, 20)]

_
i "

H

1 ’ ol
< =D M= AV z) = i+ VS 20,
j#i

1 ’ ’
=Wt = e+ LAV 20l + IV D)

Recall that for v € [0,2/M], the gradient descent step f — yV{(f, 2) is
non-expansive for any f € H and z € Z. Therefore, for any j # i,

| fe = v~V Fes2) = ft + VL 2|2y < 1Fe = Filln



Stability of Gradient Descent (Continued)

For the remaining terms, note that since ¢ is L-Lipschitz

IVe(fe,z) < Lk and  [[VE(f{,2)]| < Lk

Therefore, we have

2Lk 2Lkt+1

et = Ll < 1o = Sl + =2 = 2

Finally, iteratingon all t =1,...,T, we have

sup [(fr,z) —0(fr, 2)| <
sy 1e7r,2) - (74.2)) < 25

which concludes our proof.



