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Structured prediction: what & why?



Structured Prediction
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Structured Prediction Vs. Supervised Learning

Q: This seems “just” standard supervised learning, doesn’t it?

• Learn f : X → Y,

• Given many training examples (xi, yi)
n
i=1.

A: Indeed it is supervised learning!

However, standard learning methods do not apply here...

What changes is what we do to learn f .
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Supervised Learning 101

• X input space, Y output space,

• ` : Y × Y → R loss function,

• ρ unknown probability on X × Y.

Goal: find f? : X → Y

f? = argmin
f :X→Y

E(f), E(f) = E[`(f(x), y)],

given only the dataset (xi, yi)
n
i=1 sampled independently from ρ.
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Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

Example: Linear models. X = Rd

• f(x) = w>x for some w ∈ Rd.
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Empirical Risk Minimization (ERM)

We are interested in controlling the Excess Risk of f̂

E(f̂)− E(f?)

Wish list:

• Consistency:

lim
n→+∞

E(f̂)− E(f?) = 0

• Learning Rates:

E(f̂)− E(f?) ≤ O(n−γ)

γ > 0 (the larger the better).
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Prototypical Results: Empirical Risk Minimization

Several results allow to study ERM’s consistency and rates when:

• Y = Rd and,

• F is a “standard” space of functions (e.g. a reproducing

kernel Hilbert space).

Examples of techniques/notions involved to obtain these results:

• VC dimension,

• Rademacher & Gaussian complexity,

• Covering numbers,

• Stability,

• Empirical processes,

• . . . .
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Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

If Y is a “structured” space:

• How to choose F?

• How to perform optimization over it?

• How to study the statistics of f̂ over F?
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Structured Prediction Methods

Y arbitrary: how do we parametrize F and learn f̂?

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

– Only for special cases (classification, ranking, multi-labeling etc.)

(Bartlett et al., 2006; Duchi et al., 2010; Mroueh et al., 2012)

Score learning techniques

+ General algorithmic framework

(e.g. StructSVM (Tsochantaridis et al., 2005))

– Limited Theory (no consistency, see e.g. (Bakir et al., 2007) )
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Surrogate Frameworks



Example: Binary Classification setting

Binary Classification:

• “any” input space X

• output space Y = {−1, 1}

• 0-1 loss function, i.e `(y, y′) = 1{y 6=y′} =

0 if y = y

1 otherwise
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Example: Binary Classification Problem

• A classification rule is a map f : X → Y

• The risk of a rule f is E(f) = E(x,y)∼ρ[1{f(x)6=y}].

• The classification rule that minimizes E is

f∗ : X → Y, f∗(x) = argmax
y∈Y

ρ(y | x).

• Why? Exercise : )
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Example: Binary Classification

Goal: approximate f∗ given a training set (xi, yi)
n
i=1.

Issues:

i) Y is not linear! ⇒ H = {classification rules} is not linear!

i) `(y, y′) = 1{y 6=y′} is not convex ⇒ very hard to minimize!
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Example: Binary Classification

Idea:

i) Rephrase the problem using a linear output space,

ii) Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(surrogate classification rule)
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Example: Binary Classification

Idea:

Rephrase the problem using a linear output space,

Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(“surrogate” classification rule)

ii) Replace `(y, y′) = 1{y 6=y′} with L: R× R→ R+ non-negative

convex “surrogate” loss: e.g. logistic, least squares, hinge.
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Loss Functions for Binary Classification

Loss functions of the form L(y, y′) = L̃(y · y′)

1 2
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0 1 loss
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Surrogate ERM

The loss L induces a surrogate risk

R(g) = E(x,y)∼ρ L(g(x), y).

and can define the surrogate ERM estimator

ĝ = argmin
g∈G

Rn(g) Rn(g) =
1

n

n∑
i=1

L(g(xi), yi).

Modeling. The output space is linear ⇒ many options for G!

Optimization. The loss is convex ⇒ we can efficiently find ĝ!

Statistics. Standard results ⇒ generalization properties of ĝ!

R(ĝ)−R(g?)→ 0
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Surrogate Vs. Original Problems

This is all nice and well, but . . .

• How can we go from ĝ : X → R to some f̂ : X → Y?

Standard approach: f̂(x) = sign(ĝ(x))

• How is g? related to f??

Exercise. f?(x) = sign(g?(x))!

• Are surrogate learning rates for ĝ of any use?

Theorem.

E(f̂)− E(f?) ≤ ϕ
(
R(ĝ)−R(g?)

)
.

(where ϕ : R→ R+ depends on the surrogate loss L).
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Example: Multiclass Classification setting

Multiclass Classification:

• input space X

• output space Y = {1, 2, . . . , T}

• 0-1 loss function, i.e `(y, y′) = 1{y 6=y′}

Issues:

• Can we still map Y in R?

• What surrogate L can replace `?
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Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R

Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . . )

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21



Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R
Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . . )

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21



Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R
Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . . )

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21



Example: Multiclass Classification

Given a surrogate loss L : RT ×RT → R (hinge? least squares?)...

. . . we can train the surrogate estimator ĝ : X → RT

ĝ = argmin
g∈G

1

n

n∑
i=1

L(g(xi), c(yi)).

Question: But ĝ has values in RT . . . How can we go back to Y?

Answer: via a decoding routine!

f̂(x) = argmax
t=1,...T

ĝt(x)
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Multiclass Classification: Surrogate Vs. Original Problems

The same questions as for binary classification . . .

• How can we go from ĝ : X → RT to some f̂ : X → Y?

Decoding: f̂(x) = argmaxt=1,...,T ĝt(x)

• How is g? related to f??

Not clear: it strongly depends on L!

• Are surrogate learning rates for ĝ of any use?

Not clear: it strongly depends on L!
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The Surrogate Approach



Taking inspiration from the previous examples . . .
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Surrogate Approach: Key Ingredients

A possible approach to structured prediction is to find:

1. A linear surrogate space H,

2. An encoding c : Y → H,

3. A surrogate loss L : H×H → R,

4. A decoding d : Y → H.
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Surrogate Approach: Recipe

Then:

1. Encode training set (xi, yi)
n
i=1 into (xi, c(yi))

n
i=1,

2. Learn ĝ = argming∈G
1
n

∑n
i=1 L(g(xi), c(yi))

(using standard supervised learning methods)

3. Decode f̂ = d ◦ ĝ.
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Wish list

However, recall that learning ĝ is solving a different problem...

R(g) =

∫
L(g(x), c(y)) dρ(x, y).

In order to be “useful”, a surrogate framework needs to satisfy:

• Fischer Consistency. E(f?) = E(d ◦ g?)

• Comparison Inequality. for any g : X → H,

E(d ◦ g)− E(f?) ≤ ϕ (R(g)−R(g?)) ,

with ϕ : R+ → R+ continuous, non-decreasing and ϕ(0) = 0.
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Fisher consistency

Fisher consistency. We want this because we want that the

surrogate problem and the decoding procedure are good ones,

meaning that if we decode the best surrogate solution d ◦ g∗ we

have the same risk as the best original solution f∗.
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Comparison inequality

Comparison inequality. If we learn a ĝ which approximates g∗. . .

R(ĝ)−R(g∗)→ 0 as n→ +∞.

. . . then the comparison inequality implies,

E(d ◦ ĝ)− E(f∗)→ 0 as n→ +∞.

Therefore f̂ := d ◦ ĝ is a good estimator for the original problem!

Rates. Moreover, if R(ĝ)−R(g?) ≤ n−α for some α > 0

E(f̂)− E(f?) ≤ ϕ(n−α).

Knowledge of ϕ allows to derive rates for f̂ from the rates of ĝ!
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29



Going back to the examples...

Surrogate framework for binary classification:

• Y = {1,−1}, H = R

• coding c : {1,−1} → R is the embedding Y ↪→ R

• L : R× R→ R+: least squares , hinge , logistic

• decoding d : R→ {1,−1} is d(r) = sign(r).

Fisher consistency? Comparison inequality?

Exercise for the reader! :)
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Going back to the examples...

Surrogate framework for multiclass classification:

• Y = {1, 2, . . . , T}, H = RT

• coding c : {1, 2, . . . , T} ↪→ RT with c(i) = ei.

• L : RT × RT → R+: least squares , hinge ×.

• decoding d : RT → {1, 2, . . . , T} is d(r) = argmaxt=1,...,T rt.

Fisher consistency? Comparison inequality?

Exercise for the reader! :)

31



To sum up

Pros

• Modeling. Directly borrow from ERM literature to design

(surrogate) learning algorithms (vector-valued regression!)

• Statistics. Extend surrogate ERM rates for ĝ to f̂ by means

of the comparison inequality.

• Optimization. Bypasses/Postpones dealing with the

non-convex ` at prediction time!

Cons

• Flexibility. Need to design a surrogate framework (H, c,L, d)

on a case-by-case basis for any (`,Y).
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Likelihood Estimation Approaches



A standard approach

Alternative approach to address structured prediction problems:

• Model the likelihood of observing y given x as a function

F ? : Y × X → [0, 1] with F ?(y, x) = ρ(y|x).

• Learn F̂ : X × Y → R

• Ideally F̂ → F ∗, with F ∗(x, y) = ρ(y | x).

• Then,

• Ideal solution f∗(x) = argmaxy∈Y F ∗(x, y)

• Approximate solution f̂(x) = argmaxy∈Y F̂ (x, y)
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Struct SVM (Tsochantaridis et al., 2005)

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ 1

∀i = 1, . . . , n, ∀y ∈ Y \ yi

Intuition: the best y∗(x) must be such that F (x, y∗(x)) is

considerably larger than any other F (x, y)
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Including the Loss

However, things are more complicated. . .

we don’t want to simply maximise ρ(y | x), but we have a loss

function ` as part of the problem:

E(f) =

∫
`(f(x), y) dρ(y | x)dρX (x)
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Struct SVM Variants

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ `(yi, y)

∀i = 1, . . . , n, ∀y ∈ Y \ yi
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Struct SVM Variants

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2 +
C

n

n∑
i=1

ξi

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ `(yi, y)− ξi
∀i = 1, . . . , n, ∀y ∈ Y \ yi

Generalizing the “slack” variables in standard SVM . . .
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Optimization
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To sum up

Pros

• Flexibility. Can be virtually applied to any problem.

Cons

• Optimization. Requires solving an optimization over Y and

with respect to ` at every iteration. It can become very

expensive!

• Statistics. It has been shown that in some cases this

approach is not consistent (Bakir et al., 2007).
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Examples: Language Parsing

40



Examples: Image Segmentation
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Examples: Pose Estimation
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To wrap up. . .

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

– Only for special cases (classification, ranking, multi-labeling etc.)

(Bartlett et al., 2006; Duchi et al., 2010; Mroueh et al., 2012)

Score learning techniques

+ General algorithmic framework

(e.g. StructSVM (Tsochantaridis et al., 2005))

– Limited Theory (no consistency, see e.g. (Bakir et al., 2007) )

Can we get the best of both worlds?
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Structured Prediction with Implicit

Embeddings



Wish List

We would like a method that:

• Is flexible: can be applied to (m)any Y and `.

• Leads to efficient computations.

• Has strong theoretical guarantees (i.e. consistency, rates)
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Ideal solution

Let’s study the expected risk of our problem

E(f) =

∫
`(f(x), y) dρ(x, y)

=

∫ (∫
`(f(x), y) dρ(y|x)

)
dρX (x)

We can minimize it pointwise. Then best f? : X → Y is:

f?(x) = argmin
z∈Y

∫
`(z, y) dρ(y|x)

f? is the point-wise minimizer of the expectation Ey|x `(z, y)

conditioned w.r.t. x
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Finite Dimensional Intuition

Consider again the case where Y = {1, . . . , T}.

Then any ` : Y × Y → R is represented by a matrix V ∈ RT×T :

`(y, z) = Vyz = e>y V ez ∀y, z ∈ Y

where ey is the y-th element of the canonical basis.

This (bi)linearity will be very useful. . .
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Finite Dimensional Intuition (cont.)

Going back to f?. . .

f?(x) = argmin
z∈Y

∫
`(z, y) dρ(y|x)

= argmin
z∈Y

∫
e>z V ey dρ(y|x)

= argmin
z∈Y

e>z V

∫
ey dρ(y|x).

Denote by g? : X → RT the function g?(x) =
∫
ey dρ(y|x). Then:

f?(x) = argmin
z∈Y

e>z V g
∗(x)
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Finite Dimensional Intuition (cont.)

Idea: replace g? : X → RT in

f?(x) = argmin
z∈Y

e>z V g
∗(x)

. . . with an estimator ĝ : X → RT

f̂(x) = argmin
z∈Y

e>z V ĝ(x)
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Finite Dimensional Intuition (cont.)

What is a good algorithm to learn ĝ?

Recall that g?(x) =
∫
ey dρ(y|x) = Ey|x[ey] is a conditional

expectation. . .

It is easy to show that

g? = argmin
g:X→RT

R(g) R(g) =

∫
‖g(x)− ey‖2 dρ(x, y)

Therefore ĝ can be taken to be the least-squares ERM estimator!
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Going back to surrogate methods

Natural way to find a surrogate framework:

• Encoding. c : Y → H = RT such that y 7→ ey,

• Loss. L(g(x), c(y)) = ‖g(x)− c(y)‖2,

• Decoding. d : RT → Y such that for any h ∈ RT

d(h) = argmin
z∈Y

e>z V h

Very similar to the multiclass setting (but can be applied to any `)!
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Finite Dimensional Intuition (cont.)

We perform vector-valued ridge-regression.

Let X = Rd. We parametrize ĝ(x) = Ŵx, where

Ŵ = argmin
W∈RT×d

1

n

n∑
i=1

‖eyi −Wxi‖2 + λ‖W‖2F ,

The solution is

Ŵ = Y >X (X>X + nλI)−1

I ∈ Rd×d identity matrix, X ∈ Rn×d and Y ∈ Rn×T the matrices

with i-th row corresponding to xi and eyi respectively.
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Finite Dimensional Intuition (cont.)

By some algebraic manipulation. . .

ĝ(x) = Ŵx = Y >X (X>X + nλI)−1x︸ ︷︷ ︸
α(x)

=

n∑
i=1

αi(x) eyi ,

(1)

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1] x ∈ Rn.
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Finite Dimensional Intuition (cont.)

Therefore, by replacing the definition of f̂ . . .

f̂(x) = argmin
z∈Y

e>z V ĝ(x)

= argmin
z∈Y

n∑
i=1

αi(x) e>z V eyi︸ ︷︷ ︸
`(z,yi)

In other words,

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)
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To sum up. . .

This approach alternates between two phases:

• Learning. Where the score function α : X → Rn is estimated.

• Prediction. Where we need to solve

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

Note. similarly to likelihood estimation methods one needs to

know how to optimize over Y (but only needs to do it once!).
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Wish List

Going back to our wishlist:

• Is flexible: can be applied to (m)any Y and `.

• Leads to efficient computations.

- No optimization over Y during training,

- Recovers many previous surrogate approaches.

• Has strong theoretical guarantees (i.e. consistency, rates)

In a minute. . .
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General Case: Implicit Embeddings

Goal: generalize the intuition from the finite case to any Y.

Definition. A continuous ` : Z × Y → R admits an Implicit

Embedding (IE) if there exists a map c : Y → H into a separable

Hilbert space H and a linear operator V : H → H such that

`(z, y) =
〈

c(z) , V c(y)
〉
H.

• For V = I, we recover the notion of reproducing kernel !

• Accounts for non positive definite, non-symmetric functions,

• Holds also for infinite dimensional surrogate spaces H!

Quite technical definition however. . . when does it hold in practice?
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Which loss functions have an IE?
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A few useful sufficient conditions. . .
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Structured Prediction with Implicit Embeddings

If ` has an implicit embedding:

f?(x) = argmin
z∈Y

〈c(z), V g?(x)〉H ,

with g? : X → H such that

g?(x) =

∫
c(y) dρ(y|x),

the conditional mean embedding of ρ(·|x) with respect to the

output kernel ky(z, y) = 〈c(z), c(z)〉H. (see (Song et al., 2009))
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Structured Prediction with Implicit Embeddings (Cont.)

We approximate g? with ĝ(x) = Ŵx

Ŵ = argmin
W∈H⊗Rd

1

n

n∑
i=1

‖c(yi)−Wxi‖2 + λ‖W‖2F ,

• If H = RT we have W ∈ RT ⊗ Rd = RT×d is a matrix,

• If H is infinite dimensional, W ∈ H ⊗ Rd is an operator.

Still. . . the solution is

Ŵ = Y >X (X>X + nλI)−1

X ∈ Rn×d and Y ∈ Rn ⊗H the matrices/operators with i-th

“row” corresponding to xi and c(yi) respectively.

60



Structured Prediction with Implicit Embeddings (Cont.)

We approximate g? with ĝ(x) = Ŵx
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Structured Prediction with Implicit Embeddings (Cont.)

Ŵ contains infinitely many parameters. However. . .

ĝ(x) = Ŵx = Y >X (X>X + nλI)−1x︸ ︷︷ ︸
α(x)

=

n∑
i=1

αi(x) c(yi) ,

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1]︸ ︷︷ ︸
d×dmatrix!

x ∈ Rn.

Or, if we have a kernel k : X × X → R

α(x) = (K + nλI)−1 v(x) ∈ Rn.

– K ∈ Rn×n kernel matrix Kij = k(xi, xj)

– v(x) ∈ Rn evaluation vector v(x)i = k(xi, x).
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Structured Prediction with Implicit Embeddings (Cont.)

Therefore, analogously to the finite case. . .

f̂(x) = argmin
z∈Y

〈c(y), V ĝ(x)〉

= argmin
z∈Y

n∑
i=1

αi(x) 〈c(z), V c(yi)〉︸ ︷︷ ︸
`(z,yi)

loss trick

In other words,

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)
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The “loss trick”

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

Analogous to the “kernel trick”, the implicit embedding enables us

to find an estimator f̂ : X → Y. . .

without need for explicit knowledge of (H, c, V )!
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Implicit Embeddings and Surrogate Methods

Implicit embeddings naturally induce a surrogate framework:

• Encoding. c : Y → H,

• Loss. L(g(x), c(y)) = ‖g(x)− c(y)‖2H,

• Decoding. d : H → Y such that for any h ∈ H

d(h) = argmin
z∈Y

〈c(z), V h〉H

Q: do Fischer consistency and a comparison inequality hold?
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Fischer Consistency & Comparison Inequality

Fischer Coinsistency. We get it for free. . .

f?(x) = d(g?(x)) = argmin
z∈Y

〈c(z), V g?(x)〉H

Comparison Inequality. We have the following. . .

Theorem (Ciliberto et al., 2016) Let ` admit an implicit embedding

(H, c, V ). Then, for any measurable g : X → H

E(d ◦ g)− E(f?) ≤ q`
√
R(g)−R(g?)

with q` = 2 supy∈Y ‖V c(y)‖H.
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Universal consistency

We can borrow from the literature on vector-valued regression

(Caponnetto and De Vito, 2007) to study ĝ.

Theorem (Universal Consistency). Let X ,Y compact ` admit

an implicit embedding and k : X × X → R a universal kernel1.

Choose λ = n−1/2 to train f̂ . Then,

lim
n→+∞

E(f̂)− E(f?) = 0,

with probability 1.

1Technical requirement. Use e.g. the Gaussian kernel k(x, x′) = e−‖x−x
′‖2

/σ.
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Learning Rates

Theorem (Learning Rates). Let X ,Y compact ` admit an

implicit embedding. Choose λ = n−1/2 to train f̂ . Then,

∀δ ∈ (0, 1)

E(f̂)− E(f?) ≤ q` log(1/δ)
1

n1/4
,

hold with probability at least 1− δ.

Comments.

• Same rates as worst-case binary classification (better rates

with Tsibakov-like noise assumptions (Nowak-Vila et al., 2018)).

• Adaptive w.r.t. q` (it automatically chooses the “best”

surrogate framework).
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Example Applications



Predicting Probability Distributions
[Luise, Rudi, Pontil, Ciliberto ’18]

Setting: Y = P(Rd) probability

distributions on Rd.

Loss: Wasserstein distance

`(µ, ν) = min
τ∈Π(µ,ν)

∫
‖z − y‖2 dτ(x, y)

Digit Reconstruction
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Manifold Regression
[Rudi, Ciliberto, Marconi, Rosasco ’18]

Setting: Y Riemmanian

manifold.

Loss: (squared) geodesic

distance.

Optimization: Riemannian GD.

Fingerprint Reconstruction

(Y = S1 sphere)

Multi-labeling

(Y statistical manifold)
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Nonlinear Multi-task Learning
[Ciliberto, Rudi, Rosasco, Pontil ’17, Luise, Stamos, Pontil, Ciliberto ’19 ]

Idea: instead of solving multiple learning problems (tasks)

separately, leverage the potential relations among them.

Previous Methods: only imposing/learning linear tasks relations.

Unable to cope with non-linear

constraints (e.g. ranking, robotics,

etc.).

MTL+Structured Prediction

− Interpret multiple tasks as

separate outputs.

− Impose constraints as

structure on the joint output.
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Wrapping up. . .

Structured prediction poses hard optimization/modeling/statistical
challenges. We have seen two main strategies:

• Likelihood Estimation. Flexible yet lacking theory.

• Surrogate Methods. Theoretically sound but not flexible.

By leveraging the concept of Implicit Embeddings we found a
synthesis between these two strategies:

• Flexible. Can be applied to any ` admitting an implicit embedding.

• Optimization. Requires a minimization over Y only at test time.

• Sound. We have consistency and learning rates.
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Additional Work

Case studies:

• Learning to rank (Korba et al., 2018)

• Output Fisher Embeddings (Djerrab et al., 2018)

• Y = manifolds, ` = geodesic distance (Rudi et al., 2018)

• Y = probability space, ` = wasserstein distance (Luise et al., 2018)

Refinements of the analysis:

• Alternative derivations (Osokin et al., 2017)

• Discrete loss (Nowak-Vila et al., 2018; Struminsky et al., 2018)

Extensions:

• Application to multitask-learning (Ciliberto et al., 2017)

• Beyond least squares surrogate (Nowak-Vila et al., 2019)

• Regularizing with trace norm (Luise et al., 2019)
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