
An Introduction to Structured Prediction

Carlo Ciliberto

Computer Science

University College London

Outline

Structured prediction: what & why?

Surrogate Frameworks

Examples

The Surrogate Approach

Likelihood Estimation Approaches

Structured Prediction with Implicit Embeddings

2

Structured prediction: what & why?

Structured Prediction

3

Structured Prediction Vs. Supervised Learning

Q: This seems “just” standard supervised learning, doesn’t it?

• Learn f : X → Y,

• Given many training examples (xi, yi)
n
i=1.

A: Indeed it is supervised learning!

However, standard learning methods do not apply here...

What changes is what we do to learn f .

4

Supervised Learning 101

• X input space, Y output space,

• ` : Y × Y → R loss function,

• ρ unknown probability on X × Y.

Goal: find f? : X → Y

f? = argmin
f :X→Y

E(f), E(f) = E[`(f(x), y)],

given only the dataset (xi, yi)
n
i=1 sampled independently from ρ.

5

Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

Example: Linear models. X = Rd

• f(x) = w>x for some w ∈ Rd.

6

Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

Example: Linear models. X = Rd

• f(x) = w>x for some w ∈ Rd.

6

Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

Example: Linear models. X = Rd

• f(x) = w>x for some w ∈ Rd.

6

Empirical Risk Minimization (ERM)

We are interested in controlling the Excess Risk of f̂

E(f̂)− E(f?)

Wish list:

• Consistency:

lim
n→+∞

E(f̂)− E(f?) = 0

• Learning Rates:

E(f̂)− E(f?) ≤ O(n−γ)

γ > 0 (the larger the better).

7

Prototypical Results: Empirical Risk Minimization

Several results allow to study ERM’s consistency and rates when:

• Y = Rd and,

• F is a “standard” space of functions (e.g. a reproducing

kernel Hilbert space).

Examples of techniques/notions involved to obtain these results:

• VC dimension,

• Rademacher & Gaussian complexity,

• Covering numbers,

• Stability,

• Empirical processes,

•

8

Protypical Approach: Empirical Risk Minimization

Solve f̂ = argmin
f∈F

1

n

n∑
i=1

`(f(xi), yi).

Where F ⊆ {f : X → Y} (usually a convex function space)

If Y is a vector space (e.g. Y = R):

• F easy to choose/optimize over: (generalized) linear models,

Kernel methods, Neural Networks, etc.

If Y is a “structured” space:

• How to choose F?

• How to perform optimization over it?

• How to study the statistics of f̂ over F?

9

Structured Prediction Methods

Y arbitrary: how do we parametrize F and learn f̂?

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

– Only for special cases (classification, ranking, multi-labeling etc.)

(Bartlett et al., 2006; Duchi et al., 2010; Mroueh et al., 2012)

Score learning techniques

+ General algorithmic framework

(e.g. StructSVM (Tsochantaridis et al., 2005))

– Limited Theory (no consistency, see e.g. (Bakir et al., 2007))

10

Surrogate Frameworks

Example: Binary Classification setting

Binary Classification:

• “any” input space X

• output space Y = {−1, 1}

• 0-1 loss function, i.e `(y, y′) = 1{y 6=y′} =

0 if y = y

1 otherwise

11

Example: Binary Classification Problem

• A classification rule is a map f : X → Y

• The risk of a rule f is E(f) = E(x,y)∼ρ[1{f(x)6=y}].

• The classification rule that minimizes E is

f∗ : X → Y, f∗(x) = argmax
y∈Y

ρ(y | x).

• Why? Exercise :)

12

Example: Binary Classification

Goal: approximate f∗ given a training set (xi, yi)
n
i=1.

Issues:

i) Y is not linear! ⇒ H = {classification rules} is not linear!

i) `(y, y′) = 1{y 6=y′} is not convex ⇒ very hard to minimize!

13

Example: Binary Classification

Idea:

i) Rephrase the problem using a linear output space,

ii) Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(surrogate classification rule)

14

Example: Binary Classification

Idea:

i) Rephrase the problem using a linear output space,

ii) Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(surrogate classification rule)

14

Example: Binary Classification

Idea:

Rephrase the problem using a linear output space,

ii) Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(surrogate classification rule)

15

Example: Binary Classification

Idea:

Rephrase the problem using a linear output space,

Find a good convex “replacement” for `.

i) Replace Y = {−1, 1} to R and consider functions g : X → R
(“surrogate” classification rule)

ii) Replace `(y, y′) = 1{y 6=y′} with L: R× R→ R+ non-negative

convex “surrogate” loss: e.g. logistic, least squares, hinge.

16

Loss Functions for Binary Classification

Loss functions of the form L(y, y′) = L̃(y · y′)

1 2

0.5

1.0

1.5

2.0

0 1 loss

square loss

Hinge loss

Logistic loss

0.5

17

Surrogate ERM

The loss L induces a surrogate risk

R(g) = E(x,y)∼ρ L(g(x), y).

and can define the surrogate ERM estimator

ĝ = argmin
g∈G

Rn(g) Rn(g) =
1

n

n∑
i=1

L(g(xi), yi).

Modeling. The output space is linear ⇒ many options for G!

Optimization. The loss is convex ⇒ we can efficiently find ĝ!

Statistics. Standard results ⇒ generalization properties of ĝ!

R(ĝ)−R(g?)→ 0

18

Surrogate Vs. Original Problems

This is all nice and well, but . . .

• How can we go from ĝ : X → R to some f̂ : X → Y?

Standard approach: f̂(x) = sign(ĝ(x))

• How is g? related to f??

Exercise. f?(x) = sign(g?(x))!

• Are surrogate learning rates for ĝ of any use?

Theorem.

E(f̂)− E(f?) ≤ ϕ
(
R(ĝ)−R(g?)

)
.

(where ϕ : R→ R+ depends on the surrogate loss L).

19

Surrogate Vs. Original Problems

This is all nice and well, but . . .

• How can we go from ĝ : X → R to some f̂ : X → Y?

Standard approach: f̂(x) = sign(ĝ(x))

• How is g? related to f??

Exercise. f?(x) = sign(g?(x))!

• Are surrogate learning rates for ĝ of any use?

Theorem.

E(f̂)− E(f?) ≤ ϕ
(
R(ĝ)−R(g?)

)
.

(where ϕ : R→ R+ depends on the surrogate loss L).

19

Surrogate Vs. Original Problems

This is all nice and well, but . . .

• How can we go from ĝ : X → R to some f̂ : X → Y?

Standard approach: f̂(x) = sign(ĝ(x))

• How is g? related to f??

Exercise. f?(x) = sign(g?(x))!

• Are surrogate learning rates for ĝ of any use?

Theorem.

E(f̂)− E(f?) ≤ ϕ
(
R(ĝ)−R(g?)

)
.

(where ϕ : R→ R+ depends on the surrogate loss L).

19

Surrogate Vs. Original Problems

This is all nice and well, but . . .

• How can we go from ĝ : X → R to some f̂ : X → Y?

Standard approach: f̂(x) = sign(ĝ(x))

• How is g? related to f??

Exercise. f?(x) = sign(g?(x))!

• Are surrogate learning rates for ĝ of any use?

Theorem.

E(f̂)− E(f?) ≤ ϕ
(
R(ĝ)−R(g?)

)
.

(where ϕ : R→ R+ depends on the surrogate loss L).

19

Example: Multiclass Classification setting

Multiclass Classification:

• input space X

• output space Y = {1, 2, . . . , T}

• 0-1 loss function, i.e `(y, y′) = 1{y 6=y′}

Issues:

• Can we still map Y in R?

• What surrogate L can replace `?

20

Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R

Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . .)

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21

Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R
Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . .)

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21

Example: Multiclass Classification

• Attempt 1: Y = {1, 2, . . . , T} ⊂ R. Could replace Y with R
Not a good choice: induces an arbitrary distance on classes.

(i.e. 1 is closer to 2 than 3 and so on . . .)

• Attempt 2: replace Y = {1, 2, . . . , T} with RT .

“Replace” means “embed” Y into RT using an

encoding c : Y → RT defined by

c(i) = ei i = 1, . . . Y

where ei is the ith vector of the canonical basis of RT .

21

Example: Multiclass Classification

Given a surrogate loss L : RT ×RT → R (hinge? least squares?)...

. . . we can train the surrogate estimator ĝ : X → RT

ĝ = argmin
g∈G

1

n

n∑
i=1

L(g(xi), c(yi)).

Question: But ĝ has values in RT . . . How can we go back to Y?

Answer: via a decoding routine!

f̂(x) = argmax
t=1,...T

ĝt(x)

22

Example: Multiclass Classification

Given a surrogate loss L : RT ×RT → R (hinge? least squares?)...

. . . we can train the surrogate estimator ĝ : X → RT

ĝ = argmin
g∈G

1

n

n∑
i=1

L(g(xi), c(yi)).

Question: But ĝ has values in RT . . . How can we go back to Y?

Answer: via a decoding routine!

f̂(x) = argmax
t=1,...T

ĝt(x)

22

Example: Multiclass Classification

Given a surrogate loss L : RT ×RT → R (hinge? least squares?)...

. . . we can train the surrogate estimator ĝ : X → RT

ĝ = argmin
g∈G

1

n

n∑
i=1

L(g(xi), c(yi)).

Question: But ĝ has values in RT . . . How can we go back to Y?

Answer: via a decoding routine!

f̂(x) = argmax
t=1,...T

ĝt(x)

22

Multiclass Classification: Surrogate Vs. Original Problems

The same questions as for binary classification . . .

• How can we go from ĝ : X → RT to some f̂ : X → Y?

Decoding: f̂(x) = argmaxt=1,...,T ĝt(x)

• How is g? related to f??

Not clear: it strongly depends on L!

• Are surrogate learning rates for ĝ of any use?

Not clear: it strongly depends on L!

23

Multiclass Classification: Surrogate Vs. Original Problems

The same questions as for binary classification . . .

• How can we go from ĝ : X → RT to some f̂ : X → Y?

Decoding: f̂(x) = argmaxt=1,...,T ĝt(x)

• How is g? related to f??

Not clear: it strongly depends on L!

• Are surrogate learning rates for ĝ of any use?

Not clear: it strongly depends on L!

23

Multiclass Classification: Surrogate Vs. Original Problems

The same questions as for binary classification . . .

• How can we go from ĝ : X → RT to some f̂ : X → Y?

Decoding: f̂(x) = argmaxt=1,...,T ĝt(x)

• How is g? related to f??

Not clear: it strongly depends on L!

• Are surrogate learning rates for ĝ of any use?

Not clear: it strongly depends on L!

23

The Surrogate Approach

Taking inspiration from the previous examples . . .

24

Surrogate Approach: Key Ingredients

A possible approach to structured prediction is to find:

1. A linear surrogate space H,

2. An encoding c : Y → H,

3. A surrogate loss L : H×H → R,

4. A decoding d : Y → H.

25

Surrogate Approach: Recipe

Then:

1. Encode training set (xi, yi)
n
i=1 into (xi, c(yi))

n
i=1,

2. Learn ĝ = argming∈G
1
n

∑n
i=1 L(g(xi), c(yi))

(using standard supervised learning methods)

3. Decode f̂ = d ◦ ĝ.

26

Wish list

However, recall that learning ĝ is solving a different problem...

R(g) =

∫
L(g(x), c(y)) dρ(x, y).

In order to be “useful”, a surrogate framework needs to satisfy:

• Fischer Consistency. E(f?) = E(d ◦ g?)

• Comparison Inequality. for any g : X → H,

E(d ◦ g)− E(f?) ≤ ϕ (R(g)−R(g?)) ,

with ϕ : R+ → R+ continuous, non-decreasing and ϕ(0) = 0.

27

Wish list

However, recall that learning ĝ is solving a different problem...

R(g) =

∫
L(g(x), c(y)) dρ(x, y).

In order to be “useful”, a surrogate framework needs to satisfy:

• Fischer Consistency. E(f?) = E(d ◦ g?)

• Comparison Inequality. for any g : X → H,

E(d ◦ g)− E(f?) ≤ ϕ (R(g)−R(g?)) ,

with ϕ : R+ → R+ continuous, non-decreasing and ϕ(0) = 0.

27

Wish list

However, recall that learning ĝ is solving a different problem...

R(g) =

∫
L(g(x), c(y)) dρ(x, y).

In order to be “useful”, a surrogate framework needs to satisfy:

• Fischer Consistency. E(f?) = E(d ◦ g?)

• Comparison Inequality. for any g : X → H,

E(d ◦ g)− E(f?) ≤ ϕ (R(g)−R(g?)) ,

with ϕ : R+ → R+ continuous, non-decreasing and ϕ(0) = 0.

27

Fisher consistency

Fisher consistency. We want this because we want that the

surrogate problem and the decoding procedure are good ones,

meaning that if we decode the best surrogate solution d ◦ g∗ we

have the same risk as the best original solution f∗.

28

Comparison inequality

Comparison inequality. If we learn a ĝ which approximates g∗. . .

R(ĝ)−R(g∗)→ 0 as n→ +∞.

. . . then the comparison inequality implies,

E(d ◦ ĝ)− E(f∗)→ 0 as n→ +∞.

Therefore f̂ := d ◦ ĝ is a good estimator for the original problem!

Rates. Moreover, if R(ĝ)−R(g?) ≤ n−α for some α > 0

E(f̂)− E(f?) ≤ ϕ(n−α).

Knowledge of ϕ allows to derive rates for f̂ from the rates of ĝ!

29

Comparison inequality

Comparison inequality. If we learn a ĝ which approximates g∗. . .

R(ĝ)−R(g∗)→ 0 as n→ +∞.

. . . then the comparison inequality implies,

E(d ◦ ĝ)− E(f∗)→ 0 as n→ +∞.

Therefore f̂ := d ◦ ĝ is a good estimator for the original problem!

Rates. Moreover, if R(ĝ)−R(g?) ≤ n−α for some α > 0

E(f̂)− E(f?) ≤ ϕ(n−α).

Knowledge of ϕ allows to derive rates for f̂ from the rates of ĝ!

29

Going back to the examples...

Surrogate framework for binary classification:

• Y = {1,−1}, H = R

• coding c : {1,−1} → R is the embedding Y ↪→ R

• L : R× R→ R+: least squares , hinge , logistic

• decoding d : R→ {1,−1} is d(r) = sign(r).

Fisher consistency? Comparison inequality?

Exercise for the reader! :)

30

Going back to the examples...

Surrogate framework for multiclass classification:

• Y = {1, 2, . . . , T}, H = RT

• coding c : {1, 2, . . . , T} ↪→ RT with c(i) = ei.

• L : RT × RT → R+: least squares , hinge ×.

• decoding d : RT → {1, 2, . . . , T} is d(r) = argmaxt=1,...,T rt.

Fisher consistency? Comparison inequality?

Exercise for the reader! :)

31

To sum up

Pros

• Modeling. Directly borrow from ERM literature to design

(surrogate) learning algorithms (vector-valued regression!)

• Statistics. Extend surrogate ERM rates for ĝ to f̂ by means

of the comparison inequality.

• Optimization. Bypasses/Postpones dealing with the

non-convex ` at prediction time!

Cons

• Flexibility. Need to design a surrogate framework (H, c,L, d)

on a case-by-case basis for any (`,Y).

32

Likelihood Estimation Approaches

A standard approach

Alternative approach to address structured prediction problems:

• Model the likelihood of observing y given x as a function

F ? : Y × X → [0, 1] with F ?(y, x) = ρ(y|x).

• Learn F̂ : X × Y → R

• Ideally F̂ → F ∗, with F ∗(x, y) = ρ(y | x).

• Then,

• Ideal solution f∗(x) = argmaxy∈Y F ∗(x, y)

• Approximate solution f̂(x) = argmaxy∈Y F̂ (x, y)

33

Struct SVM (Tsochantaridis et al., 2005)

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ 1

∀i = 1, . . . , n, ∀y ∈ Y \ yi

Intuition: the best y∗(x) must be such that F (x, y∗(x)) is

considerably larger than any other F (x, y)

34

Including the Loss

However, things are more complicated. . .

we don’t want to simply maximise ρ(y | x), but we have a loss

function ` as part of the problem:

E(f) =

∫
`(f(x), y) dρ(y | x)dρX (x)

35

Struct SVM Variants

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ `(yi, y)

∀i = 1, . . . , n, ∀y ∈ Y \ yi

36

Struct SVM Variants

Model:

• joint feature map Ψ : Y × X → F with F a Hilbert space.

• F (y, x) = 〈w,Ψ(y, x)〉 with w ∈ F a parameter vector.

Algorithm: Find the parameters ŵ that solve

min
w∈F

‖w‖2 +
C

n

n∑
i=1

ξi

〈w,Ψ(yi, xi)〉 ≥ 〈w,Ψ(y, xi)〉+ `(yi, y)− ξi
∀i = 1, . . . , n, ∀y ∈ Y \ yi

Generalizing the “slack” variables in standard SVM . . .

37

Optimization

38

To sum up

Pros

• Flexibility. Can be virtually applied to any problem.

Cons

• Optimization. Requires solving an optimization over Y and

with respect to ` at every iteration. It can become very

expensive!

• Statistics. It has been shown that in some cases this

approach is not consistent (Bakir et al., 2007).

39

Examples: Language Parsing

40

Examples: Image Segmentation

41

Examples: Pose Estimation

42

To wrap up. . .

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

– Only for special cases (classification, ranking, multi-labeling etc.)

(Bartlett et al., 2006; Duchi et al., 2010; Mroueh et al., 2012)

Score learning techniques

+ General algorithmic framework

(e.g. StructSVM (Tsochantaridis et al., 2005))

– Limited Theory (no consistency, see e.g. (Bakir et al., 2007))

Can we get the best of both worlds?

43

To wrap up. . .

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

– Only for special cases (classification, ranking, multi-labeling etc.)

(Bartlett et al., 2006; Duchi et al., 2010; Mroueh et al., 2012)

Score learning techniques

+ General algorithmic framework

(e.g. StructSVM (Tsochantaridis et al., 2005))

– Limited Theory (no consistency, see e.g. (Bakir et al., 2007))

Can we get the best of both worlds?

43

Structured Prediction with Implicit

Embeddings

Wish List

We would like a method that:

• Is flexible: can be applied to (m)any Y and `.

• Leads to efficient computations.

• Has strong theoretical guarantees (i.e. consistency, rates)

44

Ideal solution

Let’s study the expected risk of our problem

E(f) =

∫
`(f(x), y) dρ(x, y)

=

∫ (∫
`(f(x), y) dρ(y|x)

)
dρX (x)

We can minimize it pointwise. Then best f? : X → Y is:

f?(x) = argmin
z∈Y

∫
`(z, y) dρ(y|x)

f? is the point-wise minimizer of the expectation Ey|x `(z, y)

conditioned w.r.t. x

45

Finite Dimensional Intuition

Consider again the case where Y = {1, . . . , T}.

Then any ` : Y × Y → R is represented by a matrix V ∈ RT×T :

`(y, z) = Vyz = e>y V ez ∀y, z ∈ Y

where ey is the y-th element of the canonical basis.

This (bi)linearity will be very useful. . .

46

Finite Dimensional Intuition (cont.)

Going back to f?. . .

f?(x) = argmin
z∈Y

∫
`(z, y) dρ(y|x)

= argmin
z∈Y

∫
e>z V ey dρ(y|x)

= argmin
z∈Y

e>z V

∫
ey dρ(y|x).

Denote by g? : X → RT the function g?(x) =
∫
ey dρ(y|x). Then:

f?(x) = argmin
z∈Y

e>z V g
∗(x)

47

Finite Dimensional Intuition (cont.)

Idea: replace g? : X → RT in

f?(x) = argmin
z∈Y

e>z V g
∗(x)

. . . with an estimator ĝ : X → RT

f̂(x) = argmin
z∈Y

e>z V ĝ(x)

48

Finite Dimensional Intuition (cont.)

What is a good algorithm to learn ĝ?

Recall that g?(x) =
∫
ey dρ(y|x) = Ey|x[ey] is a conditional

expectation. . .

It is easy to show that

g? = argmin
g:X→RT

R(g) R(g) =

∫
‖g(x)− ey‖2 dρ(x, y)

Therefore ĝ can be taken to be the least-squares ERM estimator!

49

Going back to surrogate methods

Natural way to find a surrogate framework:

• Encoding. c : Y → H = RT such that y 7→ ey,

• Loss. L(g(x), c(y)) = ‖g(x)− c(y)‖2,

• Decoding. d : RT → Y such that for any h ∈ RT

d(h) = argmin
z∈Y

e>z V h

Very similar to the multiclass setting (but can be applied to any `)!

50

Finite Dimensional Intuition (cont.)

We perform vector-valued ridge-regression.

Let X = Rd. We parametrize ĝ(x) = Ŵx, where

Ŵ = argmin
W∈RT×d

1

n

n∑
i=1

‖eyi −Wxi‖2 + λ‖W‖2F ,

The solution is

Ŵ = Y >X (X>X + nλI)−1

I ∈ Rd×d identity matrix, X ∈ Rn×d and Y ∈ Rn×T the matrices

with i-th row corresponding to xi and eyi respectively.

51

Finite Dimensional Intuition (cont.)

By some algebraic manipulation. . .

ĝ(x) = Ŵx = Y >X (X>X + nλI)−1x︸ ︷︷ ︸
α(x)

=

n∑
i=1

αi(x) eyi ,

(1)

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1] x ∈ Rn.

52

Finite Dimensional Intuition (cont.)

Therefore, by replacing the definition of f̂ . . .

f̂(x) = argmin
z∈Y

e>z V ĝ(x)

= argmin
z∈Y

n∑
i=1

αi(x) e>z V eyi︸ ︷︷ ︸
`(z,yi)

In other words,

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

53

To sum up. . .

This approach alternates between two phases:

• Learning. Where the score function α : X → Rn is estimated.

• Prediction. Where we need to solve

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

Note. similarly to likelihood estimation methods one needs to

know how to optimize over Y (but only needs to do it once!).

54

Wish List

Going back to our wishlist:

• Is flexible: can be applied to (m)any Y and `.

• Leads to efficient computations.

- No optimization over Y during training,

- Recovers many previous surrogate approaches.

• Has strong theoretical guarantees (i.e. consistency, rates)

In a minute. . .

55

General Case: Implicit Embeddings

Goal: generalize the intuition from the finite case to any Y.

Definition. A continuous ` : Z × Y → R admits an Implicit

Embedding (IE) if there exists a map c : Y → H into a separable

Hilbert space H and a linear operator V : H → H such that

`(z, y) =
〈

c(z) , V c(y)
〉
H.

• For V = I, we recover the notion of reproducing kernel !

• Accounts for non positive definite, non-symmetric functions,

• Holds also for infinite dimensional surrogate spaces H!

Quite technical definition however. . . when does it hold in practice?

56

General Case: Implicit Embeddings

Goal: generalize the intuition from the finite case to any Y.

Definition. A continuous ` : Z × Y → R admits an Implicit

Embedding (IE) if there exists a map c : Y → H into a separable

Hilbert space H and a linear operator V : H → H such that

`(z, y) =
〈

c(z) , V c(y)
〉
H.

• For V = I, we recover the notion of reproducing kernel !

• Accounts for non positive definite, non-symmetric functions,

• Holds also for infinite dimensional surrogate spaces H!

Quite technical definition however. . . when does it hold in practice?

56

Which loss functions have an IE?

57

A few useful sufficient conditions. . .

58

Structured Prediction with Implicit Embeddings

If ` has an implicit embedding:

f?(x) = argmin
z∈Y

〈c(z), V g?(x)〉H ,

with g? : X → H such that

g?(x) =

∫
c(y) dρ(y|x),

the conditional mean embedding of ρ(·|x) with respect to the

output kernel ky(z, y) = 〈c(z), c(z)〉H. (see (Song et al., 2009))

59

Structured Prediction with Implicit Embeddings (Cont.)

We approximate g? with ĝ(x) = Ŵx

Ŵ = argmin
W∈H⊗Rd

1

n

n∑
i=1

‖c(yi)−Wxi‖2 + λ‖W‖2F ,

• If H = RT we have W ∈ RT ⊗ Rd = RT×d is a matrix,

• If H is infinite dimensional, W ∈ H ⊗ Rd is an operator.

Still. . . the solution is

Ŵ = Y >X (X>X + nλI)−1

X ∈ Rn×d and Y ∈ Rn ⊗H the matrices/operators with i-th

“row” corresponding to xi and c(yi) respectively.

60

Structured Prediction with Implicit Embeddings (Cont.)

We approximate g? with ĝ(x) = Ŵx

Ŵ = argmin
W∈H⊗Rd

1

n

n∑
i=1

‖c(yi)−Wxi‖2 + λ‖W‖2F ,

• If H = RT we have W ∈ RT ⊗ Rd = RT×d is a matrix,

• If H is infinite dimensional, W ∈ H ⊗ Rd is an operator.

Still. . . the solution is

Ŵ = Y >X (X>X + nλI)−1

X ∈ Rn×d and Y ∈ Rn ⊗H the matrices/operators with i-th

“row” corresponding to xi and c(yi) respectively.

60

Structured Prediction with Implicit Embeddings (Cont.)

Ŵ contains infinitely many parameters. However. . .

ĝ(x) = Ŵx = Y >X (X>X + nλI)−1x︸ ︷︷ ︸
α(x)

=

n∑
i=1

αi(x) c(yi) ,

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1]︸ ︷︷ ︸
d×dmatrix!

x ∈ Rn.

Or, if we have a kernel k : X × X → R

α(x) = (K + nλI)−1 v(x) ∈ Rn.

– K ∈ Rn×n kernel matrix Kij = k(xi, xj)

– v(x) ∈ Rn evaluation vector v(x)i = k(xi, x).

61

Structured Prediction with Implicit Embeddings (Cont.)

Ŵ contains infinitely many parameters. However. . .

ĝ(x) = Ŵx = Y >X (X>X + nλI)−1x︸ ︷︷ ︸
α(x)

=

n∑
i=1

αi(x) c(yi) ,

where the weights α : X → Rn are such that

α(x) = (α1(x), . . . , αn(x))> = [X(X>X + nλI)−1]︸ ︷︷ ︸
d×dmatrix!

x ∈ Rn.

Or, if we have a kernel k : X × X → R

α(x) = (K + nλI)−1 v(x) ∈ Rn.

– K ∈ Rn×n kernel matrix Kij = k(xi, xj)

– v(x) ∈ Rn evaluation vector v(x)i = k(xi, x).

61

Structured Prediction with Implicit Embeddings (Cont.)

Therefore, analogously to the finite case. . .

f̂(x) = argmin
z∈Y

〈c(y), V ĝ(x)〉

= argmin
z∈Y

n∑
i=1

αi(x) 〈c(z), V c(yi)〉︸ ︷︷ ︸
`(z,yi)

loss trick

In other words,

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

62

The “loss trick”

f̂(x) = argmin
z∈Y

n∑
i=1

αi(x) `(z, yi)

Analogous to the “kernel trick”, the implicit embedding enables us

to find an estimator f̂ : X → Y. . .

without need for explicit knowledge of (H, c, V)!

63

Implicit Embeddings and Surrogate Methods

Implicit embeddings naturally induce a surrogate framework:

• Encoding. c : Y → H,

• Loss. L(g(x), c(y)) = ‖g(x)− c(y)‖2H,

• Decoding. d : H → Y such that for any h ∈ H

d(h) = argmin
z∈Y

〈c(z), V h〉H

Q: do Fischer consistency and a comparison inequality hold?

64

Fischer Consistency & Comparison Inequality

Fischer Coinsistency. We get it for free. . .

f?(x) = d(g?(x)) = argmin
z∈Y

〈c(z), V g?(x)〉H

Comparison Inequality. We have the following. . .

Theorem (Ciliberto et al., 2016) Let ` admit an implicit embedding

(H, c, V). Then, for any measurable g : X → H

E(d ◦ g)− E(f?) ≤ q`
√
R(g)−R(g?)

with q` = 2 supy∈Y ‖V c(y)‖H.

65

Fischer Consistency & Comparison Inequality

Fischer Coinsistency. We get it for free. . .

f?(x) = d(g?(x)) = argmin
z∈Y

〈c(z), V g?(x)〉H

Comparison Inequality. We have the following. . .

Theorem (Ciliberto et al., 2016) Let ` admit an implicit embedding

(H, c, V). Then, for any measurable g : X → H

E(d ◦ g)− E(f?) ≤ q`
√
R(g)−R(g?)

with q` = 2 supy∈Y ‖V c(y)‖H.

65

Universal consistency

We can borrow from the literature on vector-valued regression

(Caponnetto and De Vito, 2007) to study ĝ.

Theorem (Universal Consistency). Let X ,Y compact ` admit

an implicit embedding and k : X × X → R a universal kernel1.

Choose λ = n−1/2 to train f̂ . Then,

lim
n→+∞

E(f̂)− E(f?) = 0,

with probability 1.

1Technical requirement. Use e.g. the Gaussian kernel k(x, x′) = e−‖x−x
′‖2

/σ.

66

Learning Rates

Theorem (Learning Rates). Let X ,Y compact ` admit an

implicit embedding. Choose λ = n−1/2 to train f̂ . Then,

∀δ ∈ (0, 1)

E(f̂)− E(f?) ≤ q` log(1/δ)
1

n1/4
,

hold with probability at least 1− δ.

Comments.

• Same rates as worst-case binary classification (better rates

with Tsibakov-like noise assumptions (Nowak-Vila et al., 2018)).

• Adaptive w.r.t. q` (it automatically chooses the “best”

surrogate framework).

67

Learning Rates

Theorem (Learning Rates). Let X ,Y compact ` admit an

implicit embedding. Choose λ = n−1/2 to train f̂ . Then,

∀δ ∈ (0, 1)

E(f̂)− E(f?) ≤ q` log(1/δ)
1

n1/4
,

hold with probability at least 1− δ.

Comments.

• Same rates as worst-case binary classification (better rates

with Tsibakov-like noise assumptions (Nowak-Vila et al., 2018)).

• Adaptive w.r.t. q` (it automatically chooses the “best”

surrogate framework).
67

Example Applications

Predicting Probability Distributions
[Luise, Rudi, Pontil, Ciliberto ’18]

Setting: Y = P(Rd) probability

distributions on Rd.

Loss: Wasserstein distance

`(µ, ν) = min
τ∈Π(µ,ν)

∫
‖z − y‖2 dτ(x, y)

Digit Reconstruction

68

Manifold Regression
[Rudi, Ciliberto, Marconi, Rosasco ’18]

Setting: Y Riemmanian

manifold.

Loss: (squared) geodesic

distance.

Optimization: Riemannian GD.

Fingerprint Reconstruction

(Y = S1 sphere)

Multi-labeling

(Y statistical manifold)

69

Nonlinear Multi-task Learning
[Ciliberto, Rudi, Rosasco, Pontil ’17, Luise, Stamos, Pontil, Ciliberto ’19]

Idea: instead of solving multiple learning problems (tasks)

separately, leverage the potential relations among them.

Previous Methods: only imposing/learning linear tasks relations.

Unable to cope with non-linear

constraints (e.g. ranking, robotics,

etc.).

MTL+Structured Prediction

− Interpret multiple tasks as

separate outputs.

− Impose constraints as

structure on the joint output.
70

Wrapping up. . .

Structured prediction poses hard optimization/modeling/statistical
challenges. We have seen two main strategies:

• Likelihood Estimation. Flexible yet lacking theory.

• Surrogate Methods. Theoretically sound but not flexible.

By leveraging the concept of Implicit Embeddings we found a
synthesis between these two strategies:

• Flexible. Can be applied to any ` admitting an implicit embedding.

• Optimization. Requires a minimization over Y only at test time.

• Sound. We have consistency and learning rates.

71

Additional Work

Case studies:

• Learning to rank (Korba et al., 2018)

• Output Fisher Embeddings (Djerrab et al., 2018)

• Y = manifolds, ` = geodesic distance (Rudi et al., 2018)

• Y = probability space, ` = wasserstein distance (Luise et al., 2018)

Refinements of the analysis:

• Alternative derivations (Osokin et al., 2017)

• Discrete loss (Nowak-Vila et al., 2018; Struminsky et al., 2018)

Extensions:

• Application to multitask-learning (Ciliberto et al., 2017)

• Beyond least squares surrogate (Nowak-Vila et al., 2019)

• Regularizing with trace norm (Luise et al., 2019)

72

References i

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and

Vishwanathan, S. V. N. (2007). Predicting Structured Data. MIT Press.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification,

and risk bounds. Journal of the American Statistical Association,

101(473):138–156.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares

algorithm. Foundations of Computational Mathematics, 7(3):331–368.

Ciliberto, C., Rosasco, L., and Rudi, A. (2016). A consistent regularization approach

for structured prediction. Advances in Neural Information Processing Systems 29

(NIPS), pages 4412–4420.

Ciliberto, C., Rudi, A., Rosasco, L., and Pontil, M. (2017). Consistent multitask

learning with nonlinear output relations. In Advances in Neural Information

Processing Systems, pages 1983–1993.

Djerrab, M., Garcia, A., Sangnier, M., and d’Alché Buc, F. (2018). Output fisher

embedding regression. Machine Learning, 107(8-10):1229–1256.

73

References ii

Duchi, J. C., Mackey, L. W., and Jordan, M. I. (2010). On the consistency of ranking

algorithms. In Proceedings of the International Conference on Machine Learning

(ICML), pages 327–334.

Korba, A., Garcia, A., and d’Alché Buc, F. (2018). A structured prediction approach

for label ranking. In Advances in Neural Information Processing Systems, pages

8994–9004.

Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018). Differential properties of

sinkhorn approximation for learning with wasserstein distance. In Advances in

Neural Information Processing Systems, pages 5859–5870.

Luise, G., Stamos, D., Pontil, M., and Ciliberto, C. (2019). Leveraging low-rank

relations between surrogate tasks in structured prediction. International Conference

on Machine Learning (ICML).

Mroueh, Y., Poggio, T., Rosasco, L., and Slotine, J.-J. (2012). Multiclass learning

with simplex coding. In Advances in Neural Information Processing Systems

(NIPS) 25, pages 2798–2806.

Nowak-Vila, A., Bach, F., and Rudi, A. (2018). Sharp analysis of learning with

discrete losses. AISTATS.

74

References iii

Nowak-Vila, A., Bach, F., and Rudi, A. (2019). A general theory for structured

prediction with smooth convex surrogates. arXiv preprint arXiv:1902.01958.

Osokin, A., Bach, F., and Lacoste-Julien, S. (2017). On structured prediction theory

with calibrated convex surrogate losses. In Advances in Neural Information

Processing Systems, pages 302–313.

Rudi, A., Ciliberto, C., Marconi, G., and Rosasco, L. (2018). Manifold structured

prediction. In Advances in Neural Information Processing Systems, pages

5610–5621.

Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert space embeddings

of conditional distributions with applications to dynamical systems. In Proceedings

of the 26th Annual International Conference on Machine Learning, pages 961–968.

ACM.

Struminsky, K., Lacoste-Julien, S., and Osokin, A. (2018). Quantifying learning

guarantees for convex but inconsistent surrogates. In Advances in Neural

Information Processing Systems, pages 669–677.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin

methods for structured and interdependent output variables. volume 6, pages

1453–1484.

75

	Structured prediction: what & why?
	Surrogate Frameworks
	The Surrogate Approach
	Likelihood Estimation Approaches
	Structured Prediction with Implicit Embeddings
	Example Applications

