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Statistical Learning Theory (SLT)

SLT addresses questions related to:

I What does it mean for an algorithm to learn.

I What we can/cannot expect from a learning algorithm.

I How to design computationally & statistically efficient algorithms.

I What to do when a learning algorithm does not work...

SLT studies theoretical quantities that we don’t have access to:

It tries to bridge the gap between the unknown functional relations
governing a process and our (finite) empirical observations of it.



Motivations and Examples: Regression

Image credits: coursera



Motivations and Examples: Binary Classification

Spam detection: Automatically discriminate spam vs non-spam e-mails.

Image Classification



Motivations and Examples: Multi-class Classification

Identify the category of the object depicted in an image.

Example: Caltech 101

Image Credits: Anna Bosch and Andrew Zisserman



Motivations and Examples: Multi-class Classification

Scaling things up: detect correct object among thousands of categories.
ImageNet Large Scale Visual Recognition Challenge

http://www.image-net.org/ - Image Credits to Fengjun Lv

http://www.image-net.org/


Motivations and Examples: Structured Prediction



Formulating the Learning Problem

Main ingredients:

I X input and Y output spaces.

I ρ uknown distribution on X × Y.

I ` : Y × Y → R a loss function measuring the discrepancy `(y, y′)
between any two points y, y′ ∈ Y.

We would like to minimize the expected risk

minimize
f :X→Y

E(f) E(f) =

∫
X×Y

`(f(x), y) dρ(x, y)

The expected prediction error incurred by a predictor1 f : X → Y.

1only measurable predictors are considered.



Input Space

Linear Spaces

I Vectors

I Matrices

I Functions

“Structured” Spaces

I Strings

I Graphs

I Probabilities

I Points on a manifold

I . . .



Output Space

Linear Spaces, e.g.

I Y = R regression

I Y = {1, . . . , T} classification

I Y = RT multi-task

“Structured” Spaces, e.g.

I Strings

I Graphs

I Probabilities

I Orders (i.e. Ranking)

I . . .



Probability Distribution

Informally: the distribution ρ on X ×Y encodes the probability of getting
a pair (x, y) ∈ X × Y when observing (sampling from) the unknown
process.

Throughout the course we will assume ρ(x, y) = ρ(y|x)ρX (x)

I ρX (x) marginal distribution on X .

I ρ(y|x) conditional distribution on Y given x ∈ X .



Conditional Distribution

ρ(y|x) characterizes the relation between a given input x and the
possible outcomes y that could be observed.

In noisy settings it represents the uncertainty in our observations.

Example: y = f∗(x) + ε, with f∗ : X → R the “true” function and
ε ∼ N (0, σ) Gaussian distributed noise. Then:

ρ(y|x) = N (f∗(x), σ)



Loss Functions

The loss function
` : Y × Y → [0,+∞)

represents the cost `(f(x), y) incurred when predicting f(x) instead of y.

It is part of the problem formulation:

E(f) =

∫
`(f(x), y) dρ(x, y)

The minimizer of the risk (if it exists) is “chosen” by the loss.



Loss Functions for Regression

L(y, y′) = L(y − y′)

I Square loss L(y, y′) = (y − y′)2,

I Absolute loss L(y, y′) = |y − y′|,
I ε-insensitive L(y, y′) = max(|y − y′| − ε, 0),
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Loss Functions for Classification

L(y, y′) = L(−yy′)

I 0-1 loss L(y, y′) = 1{−yy′>0}
I Square loss L(y, y′) = (1− yy′)2,

I Hinge-loss L(y, y′) = max(1− yy′, 0),

I logistic loss L(y, y′) = log(1 + exp(−yy′)),

1 2

0.5

1.0

1.5

2.0

0 1 loss

square loss

Hinge loss

Logistic loss

0.5

Image credits: Lorenzo Rosasco.



Formulating the Learning Problem

The relation between X and Y encoded by the distribution ρ is unknown
in reality. The only way we have to access a phenomenon is from finite
observations.

The goal of a learning algorithm is therefore to find a good
approximation fn : X → Y for the minimizer of expected risk

inf
f :X→Y

E(f)

from a finite set of examples (xi, yi)
n
i=1 sampled independently from ρ.



Defining Learning Algorithms

Let S =
⋃
n∈N(X × Y)n be the set of all finite datasets on X × Y.

Denote F the set of all measurable functions f : X → Y. A learning
algorithm is a map

A : S → F
S 7→ A(S) : X → Y

To highlight our interest in studying the relation between the size of a
training set S = (xi, yi)

n
i=1 and the corresponding predictor produced by

an algorithm A, we will often denote (with some abuse of notation)

fn = A
(

(xi, yi)
n
i=1

)



Non-deterministic Learning Algorithms

We can also consider stochastic algorithms, where the estimator fn is not
automatically determined by the training set.

In these cases, given a dataset S ∈ S, an algorithm A(S) can be seen as
a distribution on F and its output is one sample from A(S).

Under this interpretation a deterministic algorithm corresponds to A(S)
being a Dirac’s delta.



Formulating the Learning Problem

Given a training set, we would like a learning algorithm to find a “good”
predictor fn.

What does “good” mean? That it has small error (or excess risk) with
respect to the best solution of the learning problem.

Excess Risk
E(fn)− inf

f∈F
E(f)



Consistency

Ideally we would like the learning algorithm to be consistent

lim
n→+∞

E(fn)− inf
f∈F
E(f) = 0

Namely that (asymptotically) our algorithm “solves” the problem.

However fn = A(S) is a random variable: the points in the training set
S = (xi, yi)

n
i=1 are randomly sampled from ρ.

So what do we mean by E(fn)→ inf E(f)?



Convergence of Random Variables

Convergence in expectation:

lim
n→+∞

E
[
E(fn)− inf

f∈F
E(f)

]
= 0

Convergence in probability:

lim
n→+∞

P
(
E(fn)− inf

f∈F
E(f) > ε

)
= 0 ∀ε > 0

Many other notions of convergence of random variables exist!



Consistency vs Convergence of the Estimator

Note that we are only interested in guaranteeing that the risk of our
estimator will converge to the best possible value

E(fn)→ inf
f∈F
E(f)

but we are not directly interested in determining whether fn → f∗ (in
some norm) where f∗ : X → Y is a minimizer of the expected risk

E(f∗) = inf
f :X→Y

E(f)

Actually, the risk could even not admit a minimizer f∗ (although typically
it will).

This is a main difference with several settings such as compressive
sensing and inverse problems.



Existence of a Minimizer for the Risk

However, the existence of f∗ can be useful in several situations.

Least Squares. `(f(x)− y) = (f(x)− y)2. Then

E(f)− E(f∗) = ‖f − f∗‖L2(X ,ρ)

Lipschitz Loss. |`(z, y)− `(z′, y)| ≤ L|z − z′|

E(f)− E(f∗) ≤ L‖f − f∗‖L1(X ,ρ)

Convergence fn → f∗ (in L1 or L2 norm respectively) automatically
guarantees consistency!



Measuring the “Quality” of a Learning Algorithm

Is consistency enough? Well no. It does not provide a quantitative
measure of how “good” a learning algorithm is.

In other words, question: how do we compare two learning algorithms?

Answer: via their Learning Rates, namely the “speed” at which the
excess risk goes to zero as n increases.

Example: Expectation

E
[
E(fn)− inf

f∈F
E(f)

]
= O(n−α) for some α > 0.

We can compare two algorithms by determining which one has a faster
learning rate (i.e. larger exponent α).



Sample Complexity, Error Bounds and Tail Bounds

Sample Complexity: minimum number n(ε, δ) of training points the
algorithm needs to achieve an excess risk lower than ε with at least
probability 1− δ:

P
(
E(fn(ε,δ))− inf

f∈F
E(f) ≤ ε

)
≥ 1− δ

Error Bounds: Upper bound ε(δ, n) > 0 on the excess risk of fn which
holds with probability larger than 1− δ

P
(
E(fn)− inf

f∈F
E(f) ≤ ε(δ, n)

)
≥ 1− δ

Tail Bounds: Lower bound δ(ε, n) ∈ (0, 1) on the probability that fn will
have excess risk larger than ε

P
(
E(fn)− inf

f∈F
E(f) ≤ ε

)
≥ 1− δ(ε, n)



Empirical Risk as a Proxy

If ρ is unknown... how can we say anything about E(fn)− inff∈F E(f)?

We have “glimpses” of ρ only via the samples (xi, yi)
n
i=1. Can we use

them to gather some information about ρ (or better, on E(f))?

Consider function f : X → Y and its empirical risk

En(f) =
1

n

n∑
i=1

`(f(xi), yi)

A simple calculation shows that

ES∼ρn(En(f)) =
1

n

n∑
i=1

E(xi,yi)∼ρ(`(f(xi), yi)) =
1

n

n∑
i=1

E(f) = E(f)

The expectation of En(f) is the expected risk E(f)!



Empirical Vs Expected

How close is En(f) to E(f) with respect to the number n of training
points?

Consider i.i.d. random variables X and (Xi)
n
i=1. Let X̄n = 1

n

∑n
i=1Xi.

Then

E[(X̄n − E(X))2] = Var(X̄n) =
Var(X)

n

Therefore the expected (squared) distance between the empirical mean of
the Xi and their expectation E(X) goes to zero as O(1/n) (Assuming X
to have finite variance).

If Xi = `(f(xi), yi), we have X̄n = En(f) and therefore

E[(En(f)− E(f))2] =
Var(`(f(x), y))

n



Empirical Vs Expected Risk

If Xi = `(f(xi), yi), we have X̄n = En(f) and therefore

E[(En(f)− E(f))2] =
Var(`(f(x), y))

n

In particular

E[|En(f)− E(f)|] ≤
√

Var(`(f(x), y))

n



Empirical Vs Expected

Assume for simplicity that there exists a minimizer f∗ : X → Y of the
expected risk

E(f∗) = inf
f∈F
E(f)

For any function f : X → Y we can decompose the excess risk as

E(f)− E(f∗) =

E(f)− En(f) + En(f)− En(f∗) + En(f∗)− E(f∗)

We can therefore leverage on the statistical relation between En and E to
study the expected risk in terms of the empirical risk.

This perspective leads to one of the most well-established strategies on
SLT: Empirical Risk Minimization



Empirical Risk Minimization

Let fn be the minimizer of the empirical risk

fn = argmin
f∈F

En(f)

Then we automatically have En(fn)− En(f∗) ≤ 0 (for any choice of
training set).

Then
E E(fn)− E(f∗) ≤ E E(fn)− En(fn) (why?)

We can focus on studying only the generalization error

E E(fn)− En(fn)



Generalization Error

How can we control the generalization error

En(fn)− E(fn)

with respect to the number n of examples?

This question is far from trivial...
(and it is one of the main subject of SLT)

Indeed, En and fn both depend on the sampled training data. Therefore,
we cannot use the result

E [ |En(fn)− E(fn)| ] ≤ O(1/
√
n)

which indeed will not be true in general... (next class).





A Taxonomy of Supervised Problems

In practice we can have many different problems and scenarios:

I Parametric Vs Non-parametric learning

I Fixed design Vs random design

I Transductive Vs inductive learning

I Offline/batch Vs online/adversarial learning

Different goals and assumptions but similar tools to study/solve them!



Parametric Vs Non-parametric

How much do we know about the model?

I Parametric: assume the predictor to be modeled by a finite number
of unknown parameters. Goal: find the parametrization that best fits
the observed data. In several scenario the goal is not in (only)
having good predictions but rather use the recovered model for other
purposes (e.g. identification).

I Non-parametric. allow the parametrization of the model to
increase in complexity as more examples are observed. Goal: find an
estimator with optimal generalization performance (i.e. lowest
expected risk E).



Fixed Design Vs Random Design

From experiment design...

I Fixed Design. Given training examples (xi, yi)
n
i=1, the goal is to

achieve good estimates for ρ(y|xi) on the prescribed training inputs.
No distribution on the input data ρX is assumed/considered.

1

n

n∑
i=1

∫
Y
`(f(xi), y) dρ(y|xi)

I Random Design. Agnostic about where the learned model will be
tested. The goal is to make good predictions with respect to the
distribution ρ(x, y).



Inductive Vs Transductive Learning

Do we have access to the test set in advance?

I Transductive: the goal is to achieve good prediction performance
on a prescribed set of test points (x̃j)

ntest
j=1 provided in advance.

Transductive learning ignores the effect of ρX on the risk but
focuses only on

1

ntest

ntest∑
j=1

∫
Y
`(f(x̃j), y) dρ(y|x̃j)

I Inductive Agnostic about where the learned model will be tested.
The goal is to make good predictions with respect to the distribution
ρ(x, y).



Offline/Batch Vs Online/Adversarial Learning

How do we observe samples from ρ?

I Offline/Batch: a finite sample of input-output examples
independently and identically distributed. Goal: minimize prediction
errors on new examples

I Online/Adversarial: We observe one input, propose a prediction
and then observe the output. Goal: minimize the regret (i.e. choose
the estimator that would have made less mistakes).

Note. The distribution could be adversarial: ρ(y|x, f(x)) instead of
ρ(y|x) can make things “hard” for us.



Wrapping up

This class:

I Motivations and Examples

I Formulating the learning problem

I Brief introduction to Learning Theory

I A Taxonomy of supervised problems

Next class: overfitting and the need for regularization...


