Localized Structured Prediction

Carlo Ciliberto¹, Francis Bach^{2,3}, Alessandro Rudi^{2,3}

- ¹ Department of Electrical and Electronic Engineering, Imperial College London, London
- 2 Département d'informatique, Ecole normale supérieure, PSL Research University.
- ³ INRIA, Paris, France

Supervised Learning 101

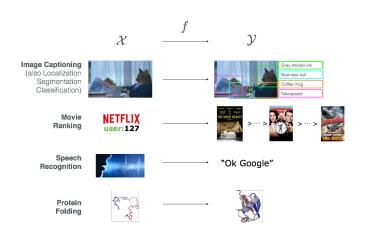
- \cdot $\mathcal X$ input space, $\mathcal Y$ output space,
- $\cdot \ \ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ loss function,
- ρ probability on $\mathcal{X} \times \mathcal{Y}$.

$$f^{\star} = \underset{f: \mathcal{X} \rightarrow \mathcal{Y}}{\operatorname{argmin}} \ \mathbb{E}[\ell(f(x), y)],$$

given only the dataset $(x_i, y_i)_{i=1}^n$ sampled independently from ρ .

1

Structured Prediction



Protypical Approach: Empirical Risk Minimization

Solve the problem:

$$\widehat{f} = \underset{f \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda R(f).$$

Where $\mathcal{G} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

Protypical Approach: Empirical Risk Minimization

Solve the problem:

$$\widehat{f} = \underset{f \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda R(f).$$

Where $\mathcal{G} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

If ${\mathcal Y}$ is a vector space

- ${\cal G}$ easy to choose/optimize: (generalized) linear models, Kernel methods, Neural Networks, etc.

3

Protypical Approach: Empirical Risk Minimization

Solve the problem:

$$\widehat{f} = \underset{f \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda R(f).$$

Where $\mathcal{G} \subseteq \{f : \mathcal{X} \to \mathcal{Y}\}$ (usually a convex function space)

If ${\mathcal Y}$ is a vector space

 \cdot $\mathcal G$ easy to choose/optimize: (generalized) linear models, Kernel methods, Neural Networks, etc.

If $\mathcal Y$ is a "structured" space:

How to choose G? How to optimize over it?

State of the art: Structured case

 ${\mathcal Y}$ arbitrary: how do we parametrize ${\mathcal G}$ and learn \widehat{f} ?

Surrogate approaches

- + Clear theory (e.g. convergence and learning rates)
- Only for special cases (classification, ranking, multi-labeling etc.)
 [Bartlett et al., 2006, Duchi et al., 2010, Mroueh et al., 2012]

Score learning techniques

- + General algorithmic framework (e.g. StructSVM [Tsochantaridis et al., 2005])
- Limited Theory (no consistency, see e.g. [Bakir et al., 2007])

Is it possible to have best of both worlds?

general algorithmic framework

t

clear theory

5

Table of contents

1. A General Framework for Structured Prediction

[Ciliberto et al., 2016]

2. Leveraging Local Structure

[This Work]

A General Framework for Structured Prediction

Characterizing the target function

$$f^* = \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \ \mathbb{E}_{xy}[\ell(f(x), y)].$$

Characterizing the target function

$$f^* = \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \ \mathbb{E}_{xy}[\ell(f(x), y)].$$

Pointwise characterization in terms of the conditional expectation:

$$f^{\star}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ \mathbb{E}_{y}[\ell(z, y) \mid x].$$

Deriving an Estimator

Idea: approximate

$$f^{\star}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ E(z, x) \qquad E(z, x) = \mathbb{E}_{y}[\ell(z, y) \mid x]$$

by means of an estimator $\widehat{E}(z,x)$ of the ideal E(z,x)

$$\widehat{f}(x) = \underset{z \in \mathcal{V}}{\operatorname{argmin}} \ \widehat{E}(z, x) \qquad \widehat{E}(z, x) \approx E(z, x)$$

Question: How to choose $\widehat{E}(z,x)$ given the dataset $(x_i,y_i)_{i=1}^n$?

Estimating the Conditional Expectation

Idea: for every z perform "regression" over the $\ell(z,\cdot)$.

$$\widehat{g}_z = \underset{g:\mathcal{X} \to \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(g(x_i), \ell(z, y_i)) + \lambda R(g)$$

Then we take $\widehat{E}(z,x) = \widehat{g}_z(x)$.

Questions:

- Models: How to choose L?
- Computations: Do we need to compute \widehat{g}_z for every $z \in \mathcal{Y}$?
- Theory: Does $\widehat{E}(z,x) \to E(z,x)$? More generally, does $\widehat{f} \to f^*$?

Square Loss!

Let L be the square loss. Then:

$$\widehat{g}_z = \underset{g}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (g(x_i) - \ell(z, y_i))^2 + \lambda ||g||^2$$

In particular, for linear models $g(x) = \phi(x)^{\top} w$

$$\widehat{g}_z(x) = \phi(x)^{\top} \widehat{w}_z$$
 $\widehat{w}_z = \underset{w}{\operatorname{argmin}} \|Aw - b\|^2 + \lambda \|w\|^2$

With

$$A = [\phi(x_1), \dots, \phi(x_n)]^{\top}$$
 and $b = [\ell(z, y_1), \dots, \ell(z, y_n)]^{\top}$

Computing the \widehat{g}_z All in Once

Closed form solution

$$\widehat{g}_z(x) = \phi(x)^{\top} \widehat{w}_z = \underbrace{\phi(x)^{\top} (A^{\top} A + \lambda n I)^{-1} A^{\top}}_{\alpha(x)} b = \alpha(x)^{\top} b$$

In particular, we can compute

$$\alpha_i(x) = \phi(x)^{\top} (A^{\top} A + \lambda n I)^{-1} \phi(x_i)$$

only once (independently of z). Then, for any z

$$\widehat{g}_z(x) = \sum_{i=1}^n \alpha_i(x)b_i = \sum_{i=1}^n \alpha_i(x)\ell(z, y_i)$$

Structured Prediction Algorithm

Input: dataset $(x_i, y_i)_{i=1}^n$.

Training: for i = 1, ..., n, compute

$$v_i = (A^{\top} A + \lambda n I)^{-1} \phi(x_i)$$

Prediction: given a new test point *x* compute

$$\alpha_i(x) = \phi(x)^\top v_i$$

Then,

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^{n} \alpha_i(x)\ell(z, y_i)$$

The Proposed Structured Prediction Algorithm

Questions:

- Models: How to choose L? Square loss!
- Computations: Do we need to compute \widehat{g}_z for every $z \in \mathcal{Y}$? No need, Compute them all in once!
- Theory: Does $\widehat{f} \to f^*$? Yes!

The Proposed Structured Prediction Algorithm

Questions:

- Models: How to choose L? Square loss!
- Computations: Do we need to compute \widehat{g}_z for every $z \in \mathcal{Y}$? No need, Compute them all in once!
- Theory: Does $\widehat{f} \to f^*$? Yes!

Theorem (Rates - [Ciliberto et al., 2016])

Under mild assumption on ℓ . Let $\lambda = n^{-1/2}$, then

$$\mathbb{E}[\ell(\widehat{f}(x), y) - \ell(f^{\star}(x), y)] \leq O(n^{-1/4}), \quad w.h.p.$$

A General Framework for Structured Prediction

(General Algorithm + Theory) Is it possible to have best of both worlds?

Yes!

We introduced an algorithmic framework for structured prediction:

- Directly applicable on a wide family of problems (\mathcal{Y}, ℓ) .
- · With strong theoretical guarantees.
- · Recovering many existing algorithms (not seen here).

What Am I Hiding?

• Theory. The key assumption to achieve consistency and rates is that ℓ is a Structure Encoding Loss Function (SELF).

$$\ell(z,y) = \langle \psi(z), \varphi(y) \rangle_{\mathcal{H}} \qquad \forall z, y \in \mathcal{Y}$$

With $\psi, \varphi : \mathcal{Y} \to \mathcal{H}$ continuous maps into \mathcal{H} Hilbert.

- · Similar to the characterization of reproducing kernels.
- In principle hard to verify. However lots of ML losses satisfy it!

 Computations. We need to solve an optimization problem at prediction time!

Prediction: The Inference Problem

Solving an optimization problem at prediction time is a standard practice in structured prediction. Known as **Inference Problem**

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \ \widehat{E}(x, z)$$

In our case it is reminiscient of a weighted barycenter.

$$\widehat{f}(x) = \underset{z \in \mathcal{Y}}{\operatorname{argmin}} \sum_{i=1}^{n} \alpha_i(x)\ell(z, y_i)$$

It is *very* problem dependent

Example: Learning to Rank

Goal: given a query x, order a set of documents d_1, \ldots, d_k according to their relevance scores y_1, \ldots, y_k w.r.t. x.

Pair-wise Loss:
$$\ell rank(f(x), \mathbf{y}) = \sum_{i,j=1}^{k} (y_i - y_j) \operatorname{sign}(f(x)_i - f(x)_j)$$

It can be shown that $\widehat{f}(x) = \operatorname{argmin}_{z \in \mathcal{Y}} \ \sum_{i=1}^n \alpha_i(x) \ell(z,y_i)$ is a **Minimum Feedback Arc Set** problem on DAGs (NP Hard!)

Still, approximate solutions can improve upon non-consistent approaches.

	Rank Loss		
Linear [7]	0.430 ± 0.004		
Hinge [27]	0.432 ± 0.008		
Logistic [28]	0.432 ± 0.012		
SVM Struct [4]	0.451 ± 0.008		
\mathbf{Ours}	$\boldsymbol{0.396 \pm 0.003}$		

Table 1: Normalized ℓ_{rank} for ranking methods on the MovieLens dataset

Additional Work

Case studies:

- Learning to rank [Korba et al., 2018]
- · Output Fisher Embeddings [Djerrab et al., 2018]
- $\mathcal{Y}=$ manifolds, $\ell=$ geodesic distance [Rudi et al., 2018]
- $\cdot \; \mathcal{Y} =$ probability space, $\ell =$ wasserstein distance [Luise et al., 2018]

Refinements of the analysis:

- · Alternative derivations [Osokin et al., 2017]
- · Discrete loss [Nowak-Vila et al., 2018, Struminsky et al., 2018]

Extensions:

- · Application to multitask-learning [Ciliberto et al., 2017]
- · Beyond least squares surrogate [Nowak-Vila et al., 2019]
- · Regularizing with trace norm [Luise et al., 2019]

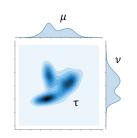
Predicting Probability Distributions

[Luise, Rudi, Pontil, Ciliberto '18]

Setting: $\mathcal{Y} = \mathcal{P}(\mathbb{R}^d)$ probability distributions on \mathbb{R}^d .

Loss: Wasserstein distance

$$\ell(\mu, \nu) = \min_{\tau \in \Pi(\mu, \nu)} \int \|z - y\|^2 d\tau(x, y)$$



Digit Reconstruction

Reconstruction Error (%)

# Classes	Ours	\widetilde{S}_{λ}	Hell	KDE
2	$\textbf{3.7} \pm \textbf{0.6}$	4.9 ± 0.9	8.0 ± 2.4	12.0 ± 4.1
4	$\textbf{22.2} \pm \textbf{0.9}$	31.8 ± 1.1	$\textbf{29.2} \pm \textbf{0.8}$	40.8 ± 4.2
10	$\textbf{38.9} \pm \textbf{0.9}$	44.9 ± 2.5	48.3 ± 2.4	64.9 ± 1.4

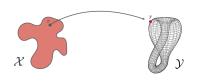
Manifold Regression

[Rudi, Ciliberto, Marconi, Rosasco '18]

Setting: ${\cal Y}$ Riemmanian manifold.

Loss: (squared) geodesic distance.

Optimization: Riemannian GD.



Fingerprint Reconstruction

$$(\mathcal{Y} = S^1 \text{ sphere})$$

	Δ Deg.
KRLS	26.9 ± 5.4
MR [33]	22 ± 6
SP (ours)	18.8 ± 3.9

Multi-labeling

 $(\mathcal{Y} \text{ statistical manifold})$

KRLS	SP (Ours)
0.63	0.73
0.92	0.92
0.62	0.73
	0.63 0.92

Nonlinear Multi-task Learning

[Ciliberto, Rudi, Rosasco, Pontil '17, Luise, Stamos, Pontil, Ciliberto '19]

Idea: instead of solving multiple learning problems (tasks) separately, *leverage the potential relations among them.*

Previous Methods: only imposing/learning linear tasks relations.

Unable to cope with non-linear constraints (e.g. ranking, robotics, etc.).

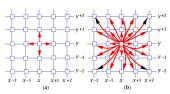
MTL+Structured Prediction

- Interpret multiple tasks as separate outputs.
- Impose constraints as structure on the joint output.

	ml100k	sushi
MART	0.499 (±0.050)	0.477 (±0.100)
RankNet	$0.525\ (\pm0.007)$	0.588 (±0.005)
RankBoost	$0.576 (\pm 0.043)$	$0.589 (\pm 0.010)$
AdaRank	$0.509 (\pm 0.007)$	$0.588 (\pm 0.051)$
Coordinate Ascent	$0.477 (\pm 0.108)$	$0.473 (\pm 0.103)$
LambdaMART	$0.564 (\pm 0.045)$	$0.571 (\pm 0.076)$
ListNet	$0.532 (\pm 0.030)$	$0.588 (\pm 0.005)$
Random Forests	$0.526 (\pm 0.022)$	$0.566 (\pm 0.010)$
SVMrank	$0.513 \ (\pm 0.008)$	$0.541 (\pm 0.005)$
Ours 0.333	$3 (\pm 0.005) 0.$	286 (± 0.006

Leveraging local structure

Local Structure





Motivating Example (Between-Locality)

Super-Resolution:

 $\text{Learn } f: Low_{res} \rightarrow High_{res}.$

However...

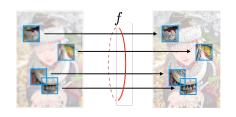
- · Very large output sets (high sample complexity).
- · Local info might be sufficient to predict output.

Motivating Example (Between-Locality)

Idea: learn local input-output maps under structural constraints (i.e. overlapping output patches should line up)

Super-Resolution:

Learn $f: Low_{res} \to High_{res}$.



Between-Locality. Let $[x]_p, [y]_p$ denote input/output "parts" $p \in P$:

•
$$\mathbb{P}([y]_p \mid x) = \mathbb{P}([y]_p \mid [x]_p)$$

•
$$\mathbb{P}([y]_p \mid [x]_p) = \mathbb{P}([y]_q \mid [x]_q)$$

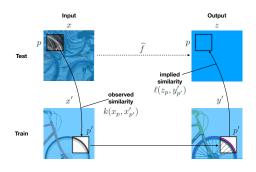
Structured Prediction + Parts

Assumption. The loss is "aware" of the parts.

$$\ell(y',y) = \sum_{p \in P} \ell_0([y']_p, [y]_p)$$

- set P indicizes the parts of \mathcal{X} and \mathcal{Y}
- · ℓ_0 loss on parts
- $[y]_p$ is the p-th part of y

Localized Structured Prediction: Inference



$$\widehat{f}(x) = \underset{y' \in \mathcal{Y}}{\operatorname{argmin}} \sum_{p,p' \in P} \sum_{i=1}^{n} \alpha_{i,p'}(x,p) \, \ell_0([y']_p, [y]_{p'})$$

Leveraging Locality

Questions:

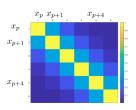
- are we really leveraging locality?
- · does the parts structure help?

Problem: if two patches are too similar (i.e. correlated) they do not provide much novel information.

Within-Locality

Intuition: "far-away" parts should be uncorrelated...

More formally, let $d: P \times P \to \mathbb{R}$ be a distance on the parts.



Assumption (Within-Locality). There exists $\gamma \geq 0$ such that

$$\mathsf{C}_{pq} = \mathbb{E}\left[x_p^{\top} x_q - x_p^{\top} x_q'\right] \leq e^{-\gamma d(p,q)}$$

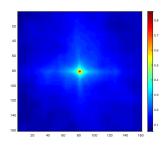
Within-Locality in the Wild

Is within-locality a sensible assumption?

Does it hold in practice on **real** datasets?

Example: (Empirical) Within-locality wrt central patch p on ImageNet

$$\widehat{\mathsf{C}}_{pq} = \frac{1}{m} \sum_{i,j=1}^{n} [x_{ip}^{\top} x_{iq} - x_{ip}^{\top} x_{jq}]$$



Leveraging Locality

Questions:

· are we really leveraging locality?

Yes!

· does the parts structure help?

Theorem (This work). Under between-locality...

• ...and no within-locality (i.e. $\gamma \approx 0$), then

$$\mathbb{E}[\ell(\widehat{f}(x), y) - \ell(f^{\star}(x), y)] = O(n^{-1/4}).$$

· ...and within-locality (i.e. $\gamma\gg 0$), then

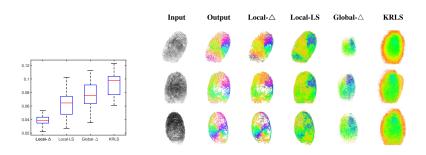
$$\mathbb{E}[\ell(\widehat{f}(x), y) - \ell(f^{*}(x), y)] = O((n|P|)^{-1/4}).$$

Experiments

Predicting the Direction of Ridges in Fingerprint Images

$$f: BW_{images} \rightarrow Angles_{images}$$

The output set is the manifold of ridge orientations (S^1) .



Conclusions

A General Framework for Structured Prediction:

- · Algorithm: Directly applicable on a wide family of problems.
- Theory: With strong theoretical guarantees.

Exploiting the local structure:

- Algorithm: Directly model locality between input/output parts (e.g. images, strings, graphs, etc.).
- Theory: Adaptively leverage locality to attain better rates.

Future work:

- · Learning the parts (i.e. latent structured prediction).
- · Integration with other models (e.g. Deep NN).

References i

- Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., and Vishwanathan, S. V. N. (2007). Predicting Structured Data. MIT Press.
- Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138–156.
- Ciliberto, C., Rosasco, L., and Rudi, A. (2016). A consistent regularization approach for structured prediction. Advances in Neural Information Processing Systems 29 (NIPS), pages 4412–4420.
- Ciliberto, C., Rudi, A., Rosasco, L., and Pontil, M. (2017). Consistent multitask learning with nonlinear output relations. In *Advances in Neural Information Processing Systems*, pages 1983–1993.
- Djerrab, M., Garcia, A., Sangnier, M., and d'Alché Buc, F. (2018). Output fisher embedding regression. *Machine Learning*, 107(8-10):1229–1256.
- Duchi, J. C., Mackey, L. W., and Jordan, M. I. (2010). On the consistency of ranking algorithms. In *Proceedings of the International Conference on Machine Learning (ICML)*, pages 327–334.
- Korba, A., Garcia, A., and d'Alché Buc, F. (2018). A structured prediction approach for label ranking. In Advances in Neural Information Processing Systems, pages 8994–9004.
- Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018). Differential properties of sinkhorn approximation for learning with wasserstein distance. In Advances in Neural Information Processing Systems, pages 5859–5870.
- Luise, G., Stamos, D., Pontil, M., and Ciliberto, C. (2019). Leveraging low-rank relations between surrogate tasks in structured prediction. *International Conference on Machine Learning (ICML)*.

References ii

- Mroueh, Y., Poggio, T., Rosasco, L., and Slotine, J.-J. (2012). Multiclass learning with simplex coding. In *Advances in Neural Information Processing Systems* (NIPS) 25, pages 2798–2806.
- Nowak-Vila, A., Bach, F., and Rudi, A. (2018). Sharp analysis of learning with discrete losses. AISTATS.
- Nowak-Vila, A., Bach, F., and Rudi, A. (2019). A general theory for structured prediction with smooth convex surrogates. arXiv preprint arXiv:1902.01958.
- Osokin, A., Bach, F., and Lacoste-Julien, S. (2017). On structured prediction theory with calibrated convex surrogate losses. In *Advances in Neural Information Processing Systems*, pages 302–313.
- Rudi, A., Ciliberto, C., Marconi, G., and Rosasco, L. (2018). Manifold structured prediction. In *Advances in Neural Information Processing Systems*, pages 5610–5621.
- Struminsky, K., Lacoste-Julien, S., and Osokin, A. (2018). Quantifying learning guarantees for convex but inconsistent surrogates. In *Advances in Neural Information Processing Systems*, pages 669–677.
- Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin methods for structured and interdependent output variables. volume 6, pages 1453–1484.