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Supervised Learning 101

- X input space, Y output space,
- f:Y xY — Rloss function,
- p probability on X x ).

f* = argmin E[E(f(z)yﬂv
[ X—=Y

given only the dataset (x;, y;)"_, sampled independently from p.
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Protypical Approach: Empirical Risk Minimization

Solve the problem:

=argmin — » C(f(z;),y:) + AR(f).
feg LZ;

Where G C {f : X — Y} (usually a convex function space)
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Protypical Approach: Empirical Risk Minimization

Solve the problem:

=argmin — » C(f(z;),y:) + AR(f).
feg LZ;

Where G C {f : X — Y} (usually a convex function space)

If V) is a vector space

- G easy to choose/optimize: (generalized) linear models, Kernel
methods, Neural Networks, etc.

If Y is a “structured” space:

- How to choose G? How to optimize over it?



State of the art: Structured case

Y arbitrary: how do we parametrize G and learn f?

Surrogate approaches

+ Clear theory (e.g. convergence and learning rates)

- Only for special cases (classification, ranking, multi-labeling etc.)
[Bartlett et al,, 2006, Duchi et al., 2010, Mroueh et al., 2012]
Score learning techniques

+ General algorithmic framework (e.g. StructSVM [Tsochantaridis et al, 2005))

- Limited Theory (no consistency, see e.g. [sakir et al, 2007] )



Is it possible to have best of both worlds?

general algorithmic framework

+

clear theory
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Characterizing the target function

[* = argmin E,, [L(f(x),y)]-
fixX=Y



Characterizing the target function

f* = argmin E;Ey w(f(x)’y)]
fixX=Y

Pointwise characterization in terms of the conditional expectation:

f*(x) = argmin E,[¢(z,y) | z].
z€eY



Deriving an Estimator

Idea: approximate

f(z) = arfg}irl E(z,x) E(z,z) =E,[l(z,y) | 2]

by means of an estimator £(~, z) of the ideal E(z, z)

flz) = argmin E(z,z) E(z,7) ~ E(z,2)
zey

Question: How to choose E(z,z) given the dataset (z;, yi),?



Estimating the Conditional Expectation

Idea: for every z perform “regression” over the ¢(z, ).

n

. 1
3. = argmin © 3" L(g(as), €z, 51)) + AR(9)
gX=R N i—1

Then we take E(z,z) = . ().

Questions:

- Models: How to choose L?
- Computations: Do we need to compute g, for every z € Y?

- Theory: Does E(z,az) — E(z,x)? More generally, does fe e



Let L be the square loss. Then:

n

. 1
J. = argmin — Z(g(ﬂcz) —0(z,y:))* + MlglI?

9 =
In particular, for linear models g(z) = ¢(z) "w

G.(z) = o(@)T@, @, = argmin [|Aw — || + Afwl|’

A= [qb(xl),...,(é(a:n)}T and = [f(z,yl),...,é(z,yn)]T



Computing the g, All in Once

Closed form solution

9:(2) = p(x) " @. = p(x) (AT A+ M) "' AT b= a(x) b
a(x)

In particular, we can compute

oi(z) = ¢(z) (AT A+ An) " o(z;)

only once (independently of z). Then, for any z

ZOL, b —ZO&, Zyv

1



Structured Prediction Algorithm

Input: dataset (z;, ;)7 ;.

Training: fori =1,...,n, compute

vi = (AT A+ M)~ Lp(z)

Prediction: given a new test point  compute

Then,



The Proposed Structured Prediction Algorithm

Questions:

- Models: How to choose L?
Square loss!

- Computations: Do we need to compute g, for every z € Y?
No need, Compute them all in once!

- Theory: Does f — f*?
Yes!



The Proposed Structured Prediction Algorithm

Questions:

- Models: How to choose L?
Square loss!

- Computations: Do we need to compute g, for every z € Y?
No need, Compute them all in once!

- Theory: Does f — f*?
Yes!

Theorem (Rates - [Ciliberto et al., 2016])
Under mild assumption on ¢. Let A\ = n=1/2, then

~

E[((f(z),y) — L(f*(z),y)] < O™,  whp.



A General Framework for Structured Prediction

(General Algorithm + Theory)
Is it possible to have best of both worlds?

Yes!

We introduced an algorithmic framework for structured prediction:

- Directly applicable on a wide family of problems (I, ¢).
- With strong theoretical guarantees.

- Recovering many existing algorithms (not seen here).

14



- Theory. The key assumption to achieve consistency and rates is
that ¢ is a Structure Encoding Loss Function (SELF).

U(z,y) = (¥(2), o(¥)) 5 Vz,y ey

With v, ¢ : Y — H continuous maps into H Hilbert.

- Similar to the characterization of reproducing kernels.
- In principle hard to verify. However lots of ML losses satisfy it!

- Computations. We need to solve an optimization problem at
prediction time!



Prediction: The Inference Problem

Solving an optimization problem at prediction time is a standard
practice in structured prediction. Known as Inference Problem

f(x) = argmin E(:E z)
z€Y

In our case it is reminiscient of a weighted barycenter.

It is *very* problem dependent

16



Example: Learning to Rank

Goal: given a query z, order a set of documents dy, ..., d; according
to their relevance scores y1,...,y, W.IL .

k
Pair-wise Loss:  frank(f Z ; — y;) sign(f(x); — f(x);)

It can be shown that f(z) = argmin, oy, >0 o (2)0(z,y;)
is a Minimum Feedback Arc Set problem on DAGs (NP Hard!)

Rank Loss
Linear [7]  0.430 £0.004
| | i Hinge [27]  0.432 £ 0.008
Still, approximate solutions can Logiotie 28] 0432 +.0.012
i . ] SVM Struct [4]  0.451 £0.008
improve upon non-consistent o aes ooty

approaches.
Table 1: Normalized £,qn. for ranking
methods on the MovieLens dataset



Additional Work

Case studies:

- Learning to rank [Korba et al, 2018]
- Output Fisher Embeddings [Djerrab et al, 2018]
- Y = manifolds, ¢ = geodesic distance [Rudi et al,, 2018]

- Y = probability space, £ = wasserstein distance [Luise et al,, 2018]

Refinements of the analysis:

- Alternative derivations [Osokin et al., 2017]
- Discrete loss [Nowak-Vila et al,, 2018, Struminsky et al., 2018]

Extensions:

- Application to multitask-learning [Ciliberto et al,, 2017]
- Beyond least squares surrogate [Nowak-Vila et al., 2019]

- Regularizing with trace norm [Luise et al,, 2019]



Predicting Probability Distributions

[Luise, Rudi, Pontil, Ciliberto "18]

Setting: J = P(R%) probability distributions o #
on R<,
v
Loss: Wasserstein distance ‘
l(p,v) = min / z— dr(x }E
(1, v L min Iz —yl? ' Y)
Digit Reconstruction
Reconstruction Error (%)
m /_\ # Classes Ours N Hell KDE
; 2 3.7£0.6 | 49409 80+24 120+4.1
s ["“ 4 22.2+0.9(31.8+1.1 292408 40.8+4.2
10 [3890+09|49+25 483+24 649414
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Manifold Regression

[Rudi, Ciliberto, Marconi, Rosasco 18]

Setting: ) Riemmanian manifold.

Loss: (squared) geodesic distance.

Optimization: Riemannian GD.

Fingerprint Reconstruction

Multi-labeling
(¥ = St sphere)

(Y statistical manifold)

Structured estimator

Ridge regression

ADeg.
KRLS 269454
MR [33] 2+6
SP (ours) 18.8+3.9

KRLS SP (Ours)
Emotions  0.63 0.73
CAL500 0.92 0.92
Scene 0.62 0.73

20



Nonlinear Multi-task Learning

[Ciliberto, Rudi, Rosasco, Pontil "17, Luise, Stamos, Pontil, Ciliberto "19 ]

Idea: instead of solving multiple learning problems (tasks)
separately, leverage the potential relations among them.

Previous Methods: only imposing/learning linear tasks relations.

Unable t ith Li ‘%5_1
nable to cope with non-linear o — ki
constraints (e.g. ranking, robotics, etc.). * -
user:id H

MTL+Structured Prediction 100k st

MART 0.499 (+£0.050)  0.477 (40.100)
RankNet 0.525 (+£0.007) 0.588 (£0.005)

— Interpret multiple tasks as RankBoost 0.576 Ein.m:s) 0.589 (£0.010)

AdaRank 0509 (£0.007) 0.588 (0.051)

Coordinate Ascent 0477 (+0.108) 0.473 (+0.103

separate outputs. LambdaMART 0.564 Eio.msg 0.571 210.07(;;

) ListNet 0,532 (£0.030) 0.588 (+0.005)

_ Random Forests 0.526 (£0.022) 0566 (+0.010

Impose constraints as SV Mrank 0513 Eio.oosg 0.511 510,005;
structure on the JOII’]t OUtpUt [ Ours 0.333 (+0.005) 0.286 (£0.006) |

21



Leveraging local structure



X2 X-1 X X+ x42
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Motivating Example (Between-Locality)

Super-Resolution:
Learn f: Low,es — Highyes.

However...

- Very large output sets (high sample complexity).
- Local info might be sufficient to predict output.

23



Motivating Example (Between-Locality)

Idea: learn local input-output maps under structural constraints
(i.e. overlapping output patches should line up)

ot

| = |
Super-Resolution: i ‘

Learn f: Lowyes — Highyes. % ! %
v/

Between-Locality. Let [z],, [y], denote input/output “parts” p € P:

' ]P)([y]p | 7) = P([?/]p | [T]p)
’ P([l/]p | MP) = ]P([y}q | Mq)

24



Structured Prediction + Parts

Assumption. The loss is “aware” of the parts.

0y ) =Y Lo([yp: [Wlp)

peEP

- set P indicizes the parts of X and Y
- /o loss on parts

- [y]p is the p-th part of y

25



Localized Structured Prediction: Inference

Input Output

Test

similarity
/
observed Uzp )
‘similarity

i)
’\w;%.

p

Train

flz) = argmin > > aip(@,p) bo([y')p, [ly)

’
y'ey p,p'€P i=1

26



Leveraging Locality

Questions:

- are we really leveraging locality?

- does the parts structure help?

Problem: if two patches are too similar (i.e. correlated)
they do not provide much novel information.

27



Within-Locality

Intuition: “far-away” parts should E
be uncorrelated... Tpe1

More formally, letd: P x P -+ R
be a distance on the parts.

Tpiq ¢

Assumption (Within-Locality). There exists v > 0 such that

_ T P I —~d(p,q)
Cpu=E[zyzy—z,7)] < e

28



Within-Locality in the Wild

Is within-locality a sensible assumption?

|

X
Does it hold in practice on real datasets? ﬁ

Example: (Empirical) Within-locality wrt central patch p on ImageNet

0
. L " - - ©
C,, =L o rig—x, ]
P4~ i,j=11ZipTiq —T;pTjq .
o
o
©
g 0
w
o
- o
0
-
02
0
o
-
PR ———
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Leveraging Locality

Questions:
- are we really leveraging locality? Yes!
- does the parts structure help?

Theorem (This work). Under between-locality...

- ..and no within-locality (i.e. v =~ 0), then

o~

E[(((2),y) = L(f*(2),y)] = O(n~'/*).

- ..and within-locality (i.e. v > 0), then

o~

E[((f(z),y) — L(f*(x),y)] = O((n||)~/*).

30



Predicting the Direction of Ridges in Fingerprint Images
f : BWimages — Anglesimages

The output set is the manifold of ridge orientations (S*).

Input Output Local-A Local-LS Global-A KRLS

& ® B o

o e W

012 . ) : N
= 1 A @B a
o i i = 23 &
R ﬁ ) =
002 § “\*

4
LocalA  LocaHlS  GlobakA  KALS|

31



Conclusions

A General Framework for Structured Prediction:

- Algorithm: Directly applicable on a wide family of problems.
- Theory: With strong theoretical guarantees.

Exploiting the local structure:

- Algorithm: Directly model locality between input/output parts
(e.g. images, strings, graphs, etc.).
- Theory: Adaptively leverage locality to attain better rates.

Future work:

- Learning the parts (i.e. latent structured prediction).

- Integration with other models (e.g. Deep NN). b



References i

Bakir, G. H., Hofmann, T, Schélkopf, B, Smola, A. J., Taskar, B, and Vishwanathan, S. V. N. (2007).
Predicting Structured Data. MIT Press.

Bartlett, P. L, Jordan, M. I, and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101(473):138-156.
Ciliberto, C., Rosasco, L., and Rudi, A. (2016). A consistent regularization approach for structured
prediction. Advances in Neural Information Processing Systems 29 (NIPS), pages 4412-4420.
Ciliberto, C., Rudi, A, Rosasco, L, and Pontil, M. (2017). Consistent multitask learning with nonlinear
output relations. In Advances in Neural Information Processing Systems, pages 1983-1993.

Djerrab, M., Garcia, A, Sangnier, M., and d’Alché Bug, F. (2018). Output fisher embedding regression.
Machine Learning, 107(8-10):1229-1256.

Duchi, J. C, Mackey, L. W,, and Jordan, M. I. (2010). On the consistency of ranking algorithms. In
Proceedings of the International Conference on Machine Learning (ICML), pages 327-334.

Korba, A, Garcia, A, and d’Alché Buc, F. (2018). A structured prediction approach for label ranking.
In Advances in Neural Information Processing Systems, pages 8994-9004.

Luise, G., Rudi, A, Pontil, M., and Ciliberto, C. (2018). Differential properties of sinkhorn
approximation for learning with wasserstein distance. In Advances in Neural Information
Processing Systems, pages 5859-5870.

Luise, G, Stamos, D., Pontil, M., and Ciliberto, C. (2019). Leveraging low-rank relations between
surrogate tasks in structured prediction. International Conference on Machine Learning (ICML).

33



References

Mroueh, Y., Poggio, T, Rosasco, L., and Slotine, J.-J. (2012). Multiclass learning with simplex coding. In
Advances in Neural Information Processing Systems (NIPS) 25, pages 2798-2806.

Nowak-Vila, A, Bach, F, and Rudi, A. (2018). Sharp analysis of learning with discrete losses. AISTATS.

Nowak-Vila, A, Bach, F, and Rudi, A. (2019). A general theory for structured prediction with smooth
convex surrogates. arXiv preprint arXiv:1902.01958.

Osokin, A, Bach, F, and Lacoste-Julien, S. (2017). On structured prediction theory with calibrated
convex surrogate losses. In Advances in Neural Information Processing Systems, pages 302-313.

Rudi, A, Ciliberto, C,, Marconi, G, and Rosasco, L. (2018). Manifold structured prediction. In
Advances in Neural Information Processing Systems, pages 5610-5621.

Struminsky, K, Lacoste-Julien, S., and Osokin, A. (2018). Quantifying learning guarantees for convex
but inconsistent surrogates. In Advances in Neural Information Processing Systems, pages
669-677.

Tsochantaridis, I, Joachims, T, Hofmann, T, and Altun, Y. (2005). Large margin methods for
structured and interdependent output variables. volume 6, pages 1453-1484.

34



	A General Framework for Structured Prediction
	Leveraging local structure

