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Multi-task Learning: Assumption

Leveraging on the tasks relations/structure
reduces the complexity of the problem
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Impose known structures

[Evgeniou et al. 2005, Fergus et al. 2010, Kadri et al. 2010, Minh et al 2013, Jayaraman et
al., 2014 and many others]

Parametrize and Learn
the structure

[Argyriou et al. 2008, Jacob et al. 2009, Zhang et al, 2010 Dinuzzo et al. 2011, Zhong
2012, and many other]
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Can we design a unifying
(convex) framework for
learning Multiple Tasks and
their structure?
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. Can we design a unifying (convex)
framework for learning multiple-tasks and
their structure?

I Can we provide a general meta-strategy for
optimization, with convergence guarantees?

[Clliberto et al. - ICML 2015]

. Can we derive new models of tasks
structures from such a framework?

[Ciliberto et al. - CVPR 2015]



RKHS

for Vector-Valued functions



Examples

A ~ Graph Laplacian

[Evgeniou et al. 2005, Argyriou et al. 2013]

Low dimensional subspace sharing
[Argyriou et al. 2008, Zhang et al. 2010] F(A) _ t‘?"(A)

Cluster Multi-task learning
[Jacob et al. 2009, kwok et al. 2012] F(A) _ HA”C

Sparse Kernel Multi-task Learning
[Ciliberto et al. 2015] F(A) _ ||A||g



. Can we design a unifying (convex)
framework for learning multiple-tasks and
their structure?

1 Can we provide a general meta-strategy for
optimization, with convergence guarantees?

[Ciliberto et al. - ICML 2015]

. Can we derive new models of tasks
structures from such a framework?

[Ciliberto et al. - CVPR 2015]



Are we done?
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Can we find a parametrization
for all Operator-valued
Kernels?

Can we still learn them?



Can we find a parametrization
for all Operator-valued
Kernels?

Can we still learn them?

Spoller alert: Yes!

[Cliliberto et al. - In Preparation]
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Multi Task Learning

If tasks are related, solving them jointly can be much more favorable!

k(x,z)A  RKHS for vector-valued functions
Are the way to go! you can:

. -
S Impose prior knowledge on the structure
e By designing a suitable structure matrix A
* o Learn the relations!
® ° Imposing a structure penalty F(A) on the problem

. Future Work

.E/:\ More complex intra-task relations
o Impose or learn more complex input-output relations



